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Preface

The Third International Workshop on Biomedical Image Registration (WBIR)
was held July 9-11, 2006, at Utrecht University, Utrecht, The Netherlands. Fol-
lowing the success of the first workshop (WBIR 1999), held in Bled, Slovenia,
and the second workshop (WBIR 2003), held in Philadelphia, Pennsylvania, this
meeting (WBIR 2006) aimed to once again gather leading researchers in the area
of biomedical image registration so as to present and discuss recent developments
in the field.

In modern medicine and biology, a valuable method of gathering knowledge
about healthy and diseased organs, tissues, and cells is the integration of comple-
mentary information from volumetric images of these objects. Such information
may be obtained by different imaging modalities, different image acquisition set-
ups, different object preparation procedures, or by sequential image acquisition
in follow-up studies or in dynamic imaging. A necessary pre-processing step for
the integration of image information is image registration by which images, con-
taining complementary information, are brought into the best possible spatial
correspondence with respect to each other. Enabling combination and quantifi-
cation of information about location, form and function, image registration is
nowadays finding increasing use in diagnosis, treatment planning, and surgical
guidance.

This year’s workshop consisted of 20 oral presentations with ample time for
discussions, 18 poster presentations and 2 tutorials: one addressing techniques
and applications and the other numerical methods for image registration. We
were delighted to welcome the participants to Utrecht and hope they found the
meeting an interesting, fruitful, enjoyable and stimulating experience. For the
readers unable to attend the workshop, we hope that you find these proceedings
a valuable record of the scientific programme.

We would like to thank everyone who contributed to the success of this
workshop: the authors for their excellent contributions, the members of the
Programme Committee for their review work, promotion of the workshop and
general support, the tutorial speakers for their outstanding educational contri-
butions, the local organization staff for their precious time and diligent efforts,
Philips Medical Systems for kind and generous financial support, and all the
attendees for their active participation in the formal and informal discussions.

July 2006 Josien P. W. Pluim
Bostjan Likar
Frans A. Gerritsen
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Medical Image Registration Based on BSP
and Quad-Tree Partitioning

A. Bardera, M. Feixas, 1. Boada, J. Rigau, and M. Sbert

Institut d’Informatica i Aplicacions, Universitat de Girona, Spain
{a_nton.bardera, miquel.feixas, imma.boada,
jaume.rigau, mateu.sbert}Qudg.es

Abstract. This paper presents a study of image simplification tech-
niques as a first stage to define a multiresolution registration framework.
We propose here a new approach for image registration based on the
partitioning of the source images in binary-space (BSP) and quad-tree
structures. These partitioned images have been obtained with a maxi-
mum mutual information gain algorithm. Multimodal registration exper-
iments with downsampled, BSP and quadtree partitioned images show
an outstanding accuracy and robustness by using BSP images, since the
grid effects are drastically reduced. The obtained results indicate that
BSP partitioning can provide a suitable framework for multiresolution
registration.

1 Introduction

Multimodal image registration plays an increasingly important role in medical
imaging. Its objective is to find a transformation that maps two or more images,
acquired using different imaging modalities, by optimizing a certain similarity
measure. Among the different similarity measures that have been proposed, mu-
tual information (MI)[2, 9] and normalized mutual information (NMI)[6] are the
most commonly used since they produce satisfactory results in terms of accu-
racy, robustness and reliability. However, MI-based methods are very sensitive
to implementation decisions, such as interpolation and optimization methods,
and multiresolution strategies [4]. The latter allow us to reduce the computa-
tional cost by means of a coarse-to-fine hierarchical representation of the images.
Crucial to building these hierarchies is the selection of the image simplification
strategy.

The main objective of this paper is to analyze the behavior of the regis-
tration process when the source images are simplified in BSP and quad-tree
structures, obtained with a maximum MI gain algorithm [5]. We will see that
multimodal registration experiments based on BSP partitioned images show a
remarkable accuracy and robustness, reducing substantially the grid effects com-
pared with both regular downsampled and quad-tree images. Since experimental
results demonstrate the good performance using these simplification strategies,
we suggest they are an ideal strategy for defining a multiresolution framework.
Such a framework can be used not only for registration purposes but also for
image processing or transmission in telemedicine environments.

J.P.W. Pluim, B. Likar, and F.A. Gerritsen (Eds.): WBIR 2006, LNCS 4057, pp. 1-8, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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This paper is organized as follows. In Section 2, we briefly describe image
registration and partitioning techniques using MI maximization. In Section 3,
a new image registration framework based on partitioned images is presented.
In Section 4, multimodal registration experiments show the suitability of the
presented approach. Finally, our conclusions are given in Section 5.

2 Previous Work

In this section we review the MI definition [1] and its application to image
registration [2,9,4, 7] and partitioning [5].

Mutual Information. Given two discrete random variables, X and Y, with
values in the sets X = {z1,...,z,} and ¥ = {y1,...,Ym}, respectively, the MI
between X and Y is defined as

n

< Dij
106Y) =33 mylos 1 g
idj

i=1 j=1

where n = |X|, m = |Y|, p; = Pr[X = ;] and ¢; = Pr[Y = y;| are the marginal
probabilities and p;; = Pr[X = z;,Y = y;] is the joint probability. I(X,Y") is a
measure of the shared information between X and Y. It can also be expressed
as I(X,Y) = H(X) — HX|Y) = H(Y) — H(Y|X), where H(X) and H(Y) are
the marginal entropies, and H(X|Y) and H(Y|X) the conditional entropies [1].
A fundamental property of MI is the data processing inequality which can be
expressed in the following way: if X — Y — Z is a Markov chain, then

I(X,Y) > I(X,Z). (2)

This result demonstrates that no processing of Y, deterministic or random, can
increase the information that Y contains about X [1].

MI-based Image Registration. The most successful automatic image regis-
tration methods are based on MI, which is a measure of the dependence between
two images. The registration of two images is represented by an information chan-
nel X — Y, where the random variables X and Y represent the images. Their
marginal probability distributions, {p;} and {g;}, and the joint probability dis-
tribution, {p;;}, are obtained by simple normalization of the marginal and joint
intensity histograms of the overlapping areas of both images [2]. The registration
method based on the maximization of MI, almost simultaneously introduced by
Maes et al. [2] and Viola et al. [9], is based on the conjecture that the correct
registration corresponds to the maximum M1 between the overlapping areas
of the two images. Later, Studholme et al. [6] proposed a normalization of MI
defined by

H(X)+H(Y):1+I(X,Y)’ 3)

H(X)Y) H(X)Y)

which is more robust than MI, due to its greater independence of the overlap
area.

NMI(X,Y) =
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The behavior of the MI-based method depends on the implementation deci-
sions. Thus, for instance, it is especially sensitive to the interpolator and opti-
mizator chosen or the binning and multiresolution strategies [4]. Generally the
grid points of the transformed image do not coincide with the grid points of
the reference image. Thus, the selection of an interpolator is required. Although
there are different interpolators, all of them introduce artifacts due to the error
patterns caused by the grid regularity [7]. On the other hand, the simple com-
putation of an MI-based similarity measure by sampling the images on a regular
grid leads to undesired artifacts, called grid effects [8].

MI-Based Partitioning Algorithm. An MI-based algorithm was presented
by Rigau et al. [5] to partition an image. Given an image with N pixels and
an intensity histogram with n; pixels in bin 4, a discrete information channel
X — Y is defined, where X represents the bins of the histogram, with marginal
probability distribution {p;} = {'\i }, and Y the image partitioned into pixels,
with uniform distribution {¢;} = { \ }. The conditional probability distribution
{pji} of this channel is defined as the transition probability from bin ¢ of the
histogram to pixel j of the image, and vice versa for {p;;}. This channel fulfills
that I(X,Y) = H(X) since, knowing the output (pixel), there is no uncertainty
about the input bin of the histogram. From the data processing inequality (2),
any clustering or quantization over X or Y, respectively represented by X and
Y, will reduce the MI of the channel. Thus, I(X,Y) > I(X,Y) and I(X,Y) >
I(X,Y).

From the above reasonings, a pixel clustering algorithm which minimizes the
loss of MI could be proposed. However, its high cost suggests adopting the con-
trary strategy, where the full image is taken as the unique initial partition and
is progressively subdivided according to the maximum MI gain for each parti-
tioning step. This algorithm is a greedy top-down procedure which partitions an
image in quasi-homogeneous regions. This method can be visualized from equa-
tion H(X) =I(X,Y)+ H(X|Y), where the acquisition of information increases
I(X, ?) and decreases H (X |§7), producing a reduction of uncertainty due to the
equalization of the regions. Different stopping criteria can be used. For more
details, see [5].

3 Registration from Partitioned Images

Registration aims to find a transformation which maps two or more images by
optimizing certain similarity measure. Multiresolution and multisampling strate-
gies can be used to reduce its computational cost by means of a coarse-to-fine
hierarchical strategy which starts with the reference and floating images on a
coarser resolution. The estimates of the correspondence or parameters of the
mapping functions while going up to finer resolutions are progressively improved.
At every level they considerably decrease the search space and thus save compu-
tational time. In particular, downsampling techniques cause a great acceleration
of the registration process [4].
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(¢) MR (d) PET

Fig. 1. Test images from the Vanderbilt database [3]

Obviously, a good strategy to speed-up the registration process could be to
use simplified images instead of the original ones. Our proposal is to register the
images obtained with the MI-based partitioning algorithm presented in Sec. 2.
These images contain a high information level for a reduced number of regions.
This proposal is a first approximation for considering the benefits of a multireso-
lution approach which would consist in the interplay of the different resolutions
of both images to accelerate registration. At each registration level, the best
suited resolution for each image would be selected. Crucial to developing this
multiresolution framework is the selection of the simplification strategy that has
to be applied to simplify images. In this paper, we investigate two subdivision
techniques, BSP and quadtree, to determine which provides better results.

To carry out this study, we propose a two step registration process. In the first
step, the original images are progressively partitioned with vertical or horizontal

(i.a) (i.b) (i.c)

(ii.a) (ii.b) (ii.c) (ii.d)

Fig. 2. (i) MR and (ii) CT images obtained from Fig. 1(a-b). (a) Quad-tree partitions
with MIR = 0.7, (b) quad-tree simplified images, (¢) BSP partitions with MIR = 0.7,
and (d) BSP simplified images.
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Table 1. Percentage of regions obtained with respect to the initial number of pixels
corresponding to MR and CT original images of Fig. 1(a-b) and for a given MIR

MIR MR CT
BSP quad-tree BSP quad-tree
0.5 0.25 0.40 0.06 0.13
0.6 0.81 1.18 0.21 0.39
0.7 221 3.16 0.77 1.28
0.8 5.28 6.56 2.73  3.87
0.9 11.88 16.05 7.98 11.48

lines (BSP) or with a quad-tree structure. In both cases, an MI ratio given by

MIR(X, SA/) = 1}1)((}2/)) is used as a stopping criterion. This ratio is a measure of
the simplification quality.

In Fig. 2 we illustrate the behaviour of this partitioning step applying it to
the 2D MR-CT pair of images (Fig. 1(a-b)). In Fig. 2(a,c) we show for each
original image the partitioning lines of the quad-tree and BSP structures and in
Fig. 2(b,d) the corresponding simplified images obtained by averaging for each
region the intensity of its pixels. We also collect in Table 1 the percentage of
regions obtained with the simplification with respect to the initial number of
pixels corresponding to the original MR and CT images. Note that a big gain
of MI is obtained with a relative low number of partitions. Thus, for instance,
in the CT case, a 70% of MI (MIR = 0.7) is obtained with approximately 1%
of the maximum number of partitions (number of pixels of the source image).
Observe that less partitions are needed in the CT image to extract the same
MIR than in the MR image. This is due to the fact that the higher the image
homogeneity, the higher the degree of simplification. In this example, the CT
image is more homogeneous than the MR image.

In the second step of the process, the previously partitioned images are regis-
tered using the NMI metric and the Powell’s algorithm as optimizer. To illustrate
the feasibility of this proposal, we have registered simplified images of the MR-
CT of Fig. 1(a-b), considering first an MIR of 0.6 and then an M IR of 0.7. The
registration results are shown in Fig. 3, where, respectively, (a) and (b) corre-
spond to MIR = 0.6 and MIR = 0.7, and (i) and (%) to the quad-tree and
BSP partitioned images. In this figure, to illustrate better the obtained results,
we apply the transformation obtained from the registration of the simplified im-
ages to the original ones. In addition, for each one of these images we compute
the translational error (¢,t,). We consider the registration result of the original
images without any partitioning process as being correct, so this error measures
the deviation in x and y translation between the transformation corresponding
to the correct registration and the evaluated one. In all the cases, the rotational
error has been omitted due to its insignificant value. Observe that BSP images
with MIR = 0.6 (Fig. 3(4i.a)) achieve a lower error than quad-tree images with
MIR = 0.7 (Fig. 3(i.b)). This demonstrates that better results are obtained
with the registration of the BSP partitioned images.
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(i.a) (0.36, 0.71) (ii.b) (0.36, 0.17)

Fig. 3. Registration for the MR-CT pair of Fig. 1(a-b). (i) Quad-tree and (ii) BSP
subdivision methods for (a) MIR = 0.6 and (b) MIR = 0.7. The translational error
(tz,ty) is shown for each registration.

4 Results and Discussion

In order to evaluate more accurately the performance of the registration of MI-
based partitioned images, experiments on MR-CT (Fig. 1(a-b)) and MR-PET
(Fig. lc-d) images are presented. In these experiments, the corresponding pair
of images have the same degree of simplification, i.e., an MR quad-tree (or BSP)
image with MITR = 0.7 is registered with a CT quad-tree (or BSP) with the
same MIR. These results are compared with regular downsampled images.

In Fig. 4 the results of our experiments are presented. The behavior of the NMI
measure is analyzed moving the floating image one pixel at each step through the
X axis from -100 to 100 pixel units around the origin. No interpolation artifacts
appear since there is no pixel interpolation. In all the plots, the bottom curve
corresponds to the NMI registration of the source images. The MR-CT and
MR-PET results are shown in the first (i) and second (i) rows, respectively.
In Fig. 4 (a), we illustrate the NMI measure obtained with different downsam-
plings of the original images. From bottom to top, the NMI curves correspond to
downsampling of 2x2, 4x4, 8x8 and 16x 16 pixels, respectively. Note that, high
artifacts appear at every n pixels coinciding with the downsampling factor. In
Fig. 4(b-c), we illustrate the NMI values for the quad-tree and BSP partitioned
images, respectively. Each curve corresponds to a different degree of simplifica-
tion. From bottom to top, M IR ranges from 0.9 to 0.5. Observe in Fig. 4(b) that
the quad-tree partition also produces correlation artifacts due to the regularity
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+
-

Fig.4. (i) MR-CT (Fig. 1(a-b)) and (i7) MR-PET (Fig. 1(c-d)) registration results
corresponding to (a) downsampled, (b) quad-tree, and (c¢) BSP images. The horizontal
axis represents the slice translation on the X-axis (in pixels) and the vertical axis the
value of NMI. For each plot, the NMI measure for different degrees of downsampling
(a) and simplification (b-c) of the images are shown.

of its partitions. However, these artifacts are slightly reduced with respect to
the downsampling case, since, although the registered images have the same de-
gree of simplification, the number and the position of the generated quad-tree
partitions are not the same.

Finally, in Fig. 4(c) we analyze the BSP partition. In this case, the grid arti-
facts are nearly completely eliminated since neither the position nor the number
of partitions of the images coincide. Registration is more robust since the prob-
ability of finding a local maximum is lower as it is shown by the smoothness of
BSP plots. Taking into account that the perfect registration is given by the max-
imum bottom curve, observe the high accuracy, i.e., the coincidence of the curve
maxima, of the registration reached with the BSP images. For instance, an accu-
rate registration is achieved with M IR = 0.7, which represents an approximate
reduction of 99% of the original number of pixels.

Experiments with the MR-PET images shown in Fig. 4(ii) behave similarly
to the MR-CT case in Fig. 4(7). In both cases, the BSP simplification scheme
behaves considerably better than both quad-tree simplification and downsam-
pled images in terms of the reduction of grid artifacts. From these experiments
we can conclude that the BSP approach is more robust and accurate.

5 Conclusions and Future Work

In this paper, we have presented a new technique for image registration based
on the partitioning of the source images. Thepartitioning algorithm relies on the
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maximization of the mutual information gain for each refinement decision. The
presented method is a first step towards a full multiresolution registration ap-
proach. Two alternatives (binary space partition and quad-tree simplifications)
have been analyzed and compared with a usual regular downsampling technique.
The quality of the subdivision has been investigated in terms of the efficiency
in registration. Results have shown the superior quality of the BSP subdivision,
which allows a smoother registering. The BSP approach performs also better
than regular downsampling. The next step in our research will consist in devel-
oping a multiresolution framework using the BSP subdivision.
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A Bayesian Cost Function Applied
to Model-Based Registration of Sub-cortical
Brain Structures

Brian Patenaude, Stephen Smith, and Mark Jenkinson

FMRIB Centre, University of Oxford

Abstract. Morphometric analysis and anatomical correspondence across
MR images is important in understanding neurological diseases as well as
brain function. By registering shape models to unseen data, we will be able
to segment the brain into its sub-cortical regions. A Bayesian cost function
was derived for this purpose and serves to minimize the residuals to a pla-
nar intensity model. The aim of this paper is to explore the properties and
justify the use of the cost function. In addition to a pure residual term (sim-
ilar to correlation ratio) there are three additional terms, one of which is a
growth term. We show the benefit of incorporating an additional growth
term into a purely residual cost function. The growth term minimizes the
size of the structure in areas of high residual variance. We further show the
cost function’s dependence on the local intensity contrast estimate for a
given structure.

1 Introduction

Morphometric changes in sub-cortical brain regions are associated with psychi-
atric disorders, neurodegenerative diseases, and aging. Furthermore, anatomi-
cal correspondence across MR images is needed to perform group analysis of
functional data. Manual delineation of subcortical structures is a very time con-
suming task and requires considerable training. One approach to solving this
problem is by registering a probabilistic brain atlas to new data [1]; a more
recent approach also incorporates anisotropic Markov Random Fields and inten-
sity priors [2]. We are proposing to solve the registration/segmentation problem
by registering statistical shape models to MRI data.

A Bayesian similarity function which aims to minimize the residuals to a pla-
nar intensity model was derived to drive the registration. The aim of this paper
is to investigate the cost function’s properties and justify its use. Like correla-
tion ratio, this cost function minimizes residuals, however it has three additional
terms. We show that the added benefit of the full Bayesian cost function over
a pure residual function is due to the addition of a growth term. The balance
between the growth and residual term is governed by the local intensity con-
trast for a given structure. The cost function’s relationship to the local intensity
contrast is examined as well.

J.P.W. Pluim, B. Likar, and F.A. Gerritsen (Eds.): WBIR 2006, LNCS 4057, pp. 9-17, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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2 Methods

2.1 Model Building

The training set consisted of 93 manually labelled T1-weighted MRI brain scans
(courtesy of the CMA in Boston). The labelling is of a high quality and their
reliability and reproducibility have been documented [3,4]. As a first step, the
training data are first affine-registered to MINI152 space. The training points are
then automatically assigned to the manually labelled data using deformable sur-
faces. Within-surface motion constraints are imposed on the deformation process
to preserve point correspondence. We assume a multivariate Gaussian model, and
estimate its parameters using PCA [5,6].

Figure 1la shows the average mesh for the left putamen, pallidum, and thala-
mus (three sub-cortical brain structures), which are used to initialize the regis-
tration. The transformations are applied directly to the model surface meshes,
which are then converted into image space for evaluation. The conversion to im-
age space is discussed in more detail in the following section. The deformations
are limited to linear combinations of the modes of variation, and are proportional
to the cost-gradient in the direction of the modes of variation. Figure 1b shows
the first three modes of variation for the left putamen.

2.2 Cost Function

Relating the surfaces to an MRI image is done using a Bayesian similarity func-
tion that was derived specifically for this purpose. It is expressed in terms of the
posterior probability of a transformation T' (the deformation of the surface mod-
els) given the observed MR intensity data, Y, and the statistical shape model,
S. In its negative log-likelihood form it acts as a cost function and has the form:

1
Fp = —log (p(T'Y, 5)) o< ~log (p(T) + , log | det (GL.Gin)|

—log (F(N;ff —1))+ N;ff log (xC2YTRY) (1)
where p(T') is the prior probability of a transformation (based on the statistical
shape model), G;, is the image generator matrix (whose columns are reshaped
model intensity images — see below), N, is the effective number of voxels in the
shapes of interest (degrees of freedom), C' is an estimate of the local intensity
contrast, YT RY is the residual variance in the area of interest, where R is a
residual forming matrix. This similarity function (described more fully in [7, 8])
is based on the principle of an image generation function that relates the surfaces
to images with voxel intensities. By fitting a model to the image intensities within
the mesh region, an intensity image is generated according to the parameter
estimates of the model. The particular form of image generation function chosen
is one that allows the voxels within an image to have a constant intensity plus
three spatially-linear gradient terms. That is, a planar fit in intensity is done
within the voxels bounded by each surface (with appropriate allowance for partial
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Fig. 1. a) Average mesh for left putamen, pallidum, and thalamus. b) First three modes
of variation of left putamen. The colours are proportional to the normalized magnitude
of the mode vector at each vertex. Dark blue corresponds to the largest magnitude,
and transitions to green, yellow, then red, with decreasing magnitude.

(residual
only)

Model Fit
(full cost)

Coronal Axial - - Sagittal

Fig. 2. T1 weighted image, FFND (blue scale) and FFPD (red scale) maps for subject
24 using the full and residual only cost function. There was a reduction in FD of 0.32,
0.24 and 1.36 for the left putamen, pallidum and thalamus respectively.
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volume effects). The best planar fit is then subtracted from the real data leaving
the residuals (Y7 RY). This is the same principle that the Correlation Ratio
uses, except that for the Correlation Ratio only a mean value is allowed in the
fitting. Here we add the linear terms in order to account for bias field effects and
slow changes in tissue densities across structures.

In forming the posterior probability, prior probabilities are required for the
transformation, p(7T") and for the intensities in regions outside the shapes of
interest. The form we take for this transformation prior, p(T), is a multivariate,
truncated uniform distribution, where we use the statistical shape model to set
the truncation limits at £3v/\ (and Ay is the variance of the kth mode in the
PCA on the training shapes). For the prior on the intensities at the borders of the
shape we use a uniform density with truncation proportional to an empirically
derived estimate for the intensity contrast of that shape, C.

2.3 Testing

Methods. Models have been created for 17 sub-cortical structures, however a
subset of three structures were used for testing. The left putamen, pallidum and
thalamus were chosen as they span several shapes, sizes, and boundary contrasts.
The putamen has good contrast with the surrounding structures, despite weaker
contrast where it borders the pallidum. The putamen may also be proximal to
cortical sulci which can be problematic due similar intensity ranges. Medially,
the pallidum intensity values transition smoothly into the white matter, which
results in weak contrast. Medially, the thalamus has high contrast with the
lateral ventricles, however suffers lateral blending into the white matter. The
thalamus also poses the challenge of having intensity inhomogeneities across its
sub-regions; this is due to changes in the grey matter density.

Our investigation of the full (Bayesian) cost function, Fiz is done by comparing
the registration under the full versus simple form of the cost function. The simple
form is a purely residual-based cost function similar to the Correlation Ratio,
although slightly different to the fourth term in the full cost function. The purely
residual-based cost function, which is simpler and more intuitive, is expressed
as:

7C2YTRY

Fr < —log ( Nojs

) (2)
For practical implementation/optimization purposes the probability density
function of the shape model is truncated at £3+v/\y (Mg is the variance along the
E*h eigen-vector) and the value of C' was set to 28%, 22%, and 32% of the full
intensity range for the left putamen, pallidum, and thalamus respectively. The
C parameter adjusts the balance between the residual and the growth term. We
refer to the third term in the full cost function as the growth term; this behaves
such that as a structure increases in size, the cost decreases. The degree to which
this impacts the registration is governed by the C' parameter. The registration
truncated the number of modes at 25, which explained 97.3%, 97.0%, 96.4% of
the variation in the left putamen, pallidum and thalamus respectively. The mul-
tiple modes of variation were searched simultaneously using a conjugate-gradient
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method. The registrations were performed on T1-weighted MRI images, each im-
age had corresponding manual labels (provided by the CMA), which were only
used for validation. All the test data was excluded from the training data. The
manual labels were treated as our gold standard.

Evaluation. The three measures used to compare the registration output with
the manual labels are defined in equation 3, 4 and 5.

Z min D(a,b)

A be ANM
FFND = *°
Nmanual (3)
Z min  D(a,b)
ae M be A'NM 4
FFPD = “°
Nmanual ( )
FD =FFND + FFPD (5)

where FFND is the fractional false negative distance, FFPD is the fractional
false positive distance and FD is the fractional distance. A and M are the sets of
voxels assigned to a particular label by the registration and manual method re-
spectively. A and M’ are the complements of the sets A and M respectively. D is
a Euclidean distance operator, and N, qnuar is the volume of the manual labelled
region. FFEND is a distance weighted sum of the false negative voxels, normal-
ized by the number of voxels in the manual segmentation (our gold standard).
For FFND, D is defined as the minimum Euclidean distance between the false
negative voxel and intersection of the new label and the gold standard. FFPD
is the normalized distance weighted sum of the false positive voxels. FD is the
normalized distance weighted sum of all mislabelled voxels (summary statistic
of total error).

These distance-weighted sums increase sensitivity to large variations from the
gold standard, thereby putting less emphasis on small dilations or erosions.

3 Results and Discussion

Figure 3 a, b, and ¢ show the difference in FFND, FFPD, and FD between the
full and pure residual cost function for the left putamen, pallidum and thalamus
respectively. The registration was performed on 30 previously unseen images.
There is a significant decrease in FD when using the full form of the cost func-
tion, suggesting a more accurate registration. The accompanying decrease in the
FFND suggests that the residual form was systematically underestimating the
structure, and that the addition of the growth term corrected for this. This can be
seen in figure 2, where the thick blue band at the boundary of the true structure
for the pure residual case signifies the under-estimation (FFND is represented
by the blue scale). The additional growth term seems to allow the algorithm to
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Fig. 3. Difference in FFND, FFPD, FD between the full and residual only cost func-
tions for the left putamen, pallidum and thalamus. The difference is calculated such
that negative values correspond to lower fractional distance in the full cost function
case. FD is the summary statistic, which indicates the overall quality of the registration.
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the push towards the true boundary. Though not as significantly, the improve-
ment in FFND comes at a cost to FFPD. This is not unexpected; in the case
of reduced FFND, the fit boundary is approaching the true anatomical one and
is hence approaching areas of partial voluming. The cost to FFPD is evident in
figure 2 in the case of the thalamus, the increase in FFPD (red band) on the
lateral side of the of the thalamus is a symptom of poor contrast. In the pure
residual case, the resultant structure is smaller and mostly encompassed by the
true structure, hence you would expect very few false positives. The residual
cost provides no reason for the model to expand to the true limits of the region,
particularly if there are nonlinear inhomogeneities in the structure. The thala-
mus contains subregions of varying grey-matter densities (hence varying mean
intensities). Our model assumes linear gradients across a structure and hence
cannot properly model the abrupt changes in mean intensity.

Figure 4 shows the change in distance measures for varying local intensity
contrast estimates. The FFPD is linearly increasing, however the FFND is ex-
ponentially decreasing over the region of contrasts. For each structure there is
a clear minimum mean FD, and hence optimal value for C'. The variance in FD
for an appropriate value of C is relatively small. For a set of images from the
same scanner, C' may be calibrated on a single image. C, however, should be
varied over an adequate range and sampled finely enough to cope with the large
variance for poor values of C.

4 Conclusions

We have shown that the full Bayesian cost function outperforms the simple
residual-only cost function. The full cost function permits structural growth in
regions of low variance. This is important as it is easier to achieve a lower residual
for a smaller area within a structure, and so a growth term is necessary. Indeed,
this is what was observed; without the growth term the structures tended to
shrink within the region of interest. The determinant term was not discussed
here, as it was heavily outweighed by the residual and growth term and did not
have much impact on the results. The local estimate of intensity contrast is crit-
ical to the registration performance. The performance across a range of C' values
is well behaved, and the minimum mean FD is clear. Currently this framework
for registration is modality independent, as it depends solely on residual vari-
ance after a general intensity fit (mean plus linearly varying spatial terms) per
structure, and does not require any prior knowledge about absolute intensity
values.
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Abstract. 3D inter-subject registration of image volumes is important for tasks
such as atlas-based segmentation, deriving population averages, or voxel and
tensor-based morphometry. A number of methods have been proposed to tackle
this problem but few of them have focused on the problem of registering whole
body image volumes acquired either from humans or small animals. These
image volumes typically contain a large number of articulated structures, which
makes registration more difficult than the registration of head images, to which
the vast majority of registration algorithms have been applied. This paper pre-
sents a new method for the automatic registration of whole body CT volumes,
which consists of two steps. Skeletons and external surfaces are first brought
into approximate correspondence with a robust point-based method. Trans-
formations so obtained are refined with an intensity-based algorithm that
includes spatial adaptation of the transformation’s stiffness. The approach has
been applied to whole body CT images of mice and to CT images of the human
upper torso. We demonstrate that the approach we propose can successfully
register image volumes even when these volumes are very different in size and
shape or if they have been acquired with the subjects in different positions.

1 Introduction

Image registration is an essential tool in order to be able to follow the progression of
diseases, to assess response to therapy, to compare populations, or to develop atlas-
based segmentation methods. The latter involves segmenting structures in one reference
volume, commonly called the atlas, and using this reference volume to segment these
structures in other volumes. This necessitates being able to register the atlas to the
volumes that need to be analyzed. Because it involves a number of subjects, non-rigid
registration methods are required to address this problem. A number of methods and
techniques have been developed over the years to achieve this; chief among them are
intensity-based techniques and more specifically, methods that rely on Mutual Informa-
tion (MI) [1][2]. However, most automatic methods that have been proposed have been
applied to head images only. This is because head images are relatively simple
compared to whole body images. Head images contain one single major identifiable
structure (the cranium) as opposed to whole body images that contain many articulated
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structures (the bones). In head images the cranium surrounds the brain, therefore
constraining the deformation. In whole body images, the situation is the opposite: soft
tissue surrounds the bones, leading to very large inter-subject size and shape differences.
All these differences make the registration of whole body images much more difficult
than the registration of head images. Despite these difficulties non-rigid registration
techniques for extra-cranial applications have been proposed for specific applications
such as the registration of breast, abdomen, lung, or prostate images. For instance,
Camara et al. [3] use a Free-Form Deformation (FFD) approach guided by a gradient
vector flow combined with a grey-level MI non-linear registration algorithm for thoracic
and abdominal applications. Rueckert et al. [4] also use FFD to register breast images
acquired before and after contrast injection; these are image volumes acquired from the
same subject. Cai et al. [S] present a validation study of CT and PET lung image
registration and fusion based on the chamfer-matching method; this study also involves
images acquired from the same subject.

In general, however, fully automatic inter-subject or even intra-subject registration
of whole body images remains a challenge. One of the main reasons is that, in
practice, non-rigid registration algorithms need to be initialized with a rigid or affine
transformation. If the image volumes do not contain articulated structures, as is the
case for head images, a single transformation is sufficient. If, on the other hand, these
image volumes contain a number of bony structures, which are rigid but whose
relative position changes from acquisition to acquisition, a single transformation is
insufficient. A number of transformations need to be computed, one for each element
in the articulated structure. These transformations then need to be somehow
combined. This is the approach followed by Little et al. [6]. These authors present a
technique designed for the intra-subject registration of head and neck images.
Vertebrae are registered to each other using rigid body transformations (one for each
pair of vertebrae). Transformations obtained for the vertebrae are then interpolated to
produce a transformation for the entire volume. One problem with the approach is that
it requires segmenting and identifying corresponding vertebrae in the image volumes.
Because corresponding vertebrae are registered with rigid-body transformations, the
approach is also applicable only to intra-subject registration problems. Martin-
Fernandez et al. [7] propose a method, which they call articulated registration. This
approach requires the labeling of landmarks to define wire models that represent the
bones. A series of affine transformations are computed to register the rods, which are
the elements of the wires. The final transformation for any pixel in the image is
obtained as a linear combination of these elementary transformations with a weighting
scheme that is inversely proportional to the distance to a specific rod. This technique
has been applied to the registration of hand radiographs. Arsigny et al. [8] also
propose an approach in which local rigid or affine transformations are combined.
They note that simple averaging of these transformations leads to non-invertible
transformations, and they propose a scheme that permits the combination of these
local transformations, while producing an overall transformation that is invertible.
Their method is applied to the registration of histological images. The authors
comment on the fact that their method could also be used for articulated structures but
do not present examples. Recently, Papademetris et al. put forth an articulated rigid
registration method that is applied to the serial registration of lower-limb mouse
images [9]. In this approach, each individual joint is labeled and the plane in which
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the axis of rotation for each joint lies is identified. A transformation that blends
piecewise rotations is then computed. The authors comment of the fact that piecewise
rigid models often lead to transformations that are discontinuous at the motion boun-
daries, which produces folding and stretching. The approach they propose produces a
transformation that is continuous at these interfaces. The authors have applied their
method to the registration of lower limbs in serial mouse images. They suggest that
their technique could be used to initialize an intensity-based algorithm but do not
present results.

In summary, a survey of the literature shows that only a few methods have been
proposed to register images including articulated structures. The general approach is
to compute piecewise rigid or affine transformations and to somehow blend and
combine these transformations. Unfortunately, this approach is often not practical
because it requires identifying various structures in the images such as joints or
individual bones. In this paper we propose a method that does not require structure
labeling. This method can thus be automated, and we demonstrate its performance on
small animal and human images.

2 Methods

There are two steps in the automatic registration method we propose. In the first step,
we register only bony structures and the outside body surfaces. The transformation we
compute in this first step is then used to initialize an intensity-based registration
algorithm. Because our aim is to develop a fully automatic technique, we have ruled out
methods that require identifying and labeling homologous structures. These methods
would indeed require developing general and robust feature extraction algorithms,
which is not easy to achieve. Hence, in our first step, we have chosen to rely on the
robust point-based registration algorithm proposed by Chui et al. [10]. This algorithm
takes as input two clouds of points and iteratively computes a correspondence between
these points and the transformation that registers them, without requiring manual
labeling. In addition, the two sets of points also do not need to have the same cardinality
and the algorithm can deal with the problem of outliers. Correspondence is computed
with the softassign algorithm proposed by Gold et al. [11]. Once correspondence is
determined, a thin plate spline-based non-rigid transformation is computed to register
the points. Because we use this algorithm as an initial step, the transformation it
produces does not need to be extremely accurate. Point clouds in the two volumes can
thus be selected in a somewhat arbitrary fashion.

In the approach we have tested so far, bone surfaces are first extracted, which can
be done easily in CT images with a simple threshold. We do this in both image sets
and sample the two surfaces to create the two clouds of points. Currently, we do not
use any geometric feature, such as the surface curvature, to select the points. Results
will show that this approach leads to acceptable results even when the skeletons are in
very different positions. We then extract the external surface of the body. This is also
easily achieved with an intensity threshold. As is the case for the bone surfaces, the
whole body surfaces are sampled to create a second cloud of points that is added to
the first one. This leads to two clouds of points, one per image volume, that typically
contain 1000 to 3500 points, which are registered using the robust point-based
approach of Chui et al.
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The second step in our approach relies on an intensity-based registration
algorithm we have proposed recently [12], which we call ABA for adaptive bases
algorithm, to refine the results obtained in the first step. In this algorithm, the
deformation field that registers the two images is modeled as a linear combination
of radial basis functions with finite support. Coefficients for these basis functions
are computed that maximize the normalized mutual information (NMI) between the
images. As is often the case for non-rigid registration algorithms based on basis
functions, our algorithm includes mechanisms designed to produce transformations
that are topologically correct (i.e., transformations that do not lead to tearing or
folding). This is done by imposing constraints on the relative value of the
coefficients of adjacent basis functions. Furthermore, we compute both the forward
and the backward transformations simultaneously, and we constrain these
transformations to be inverses of each other. In our experience, this leads to
transformations that are smooth and regular.

In our application, there are two broad categories of structures: bones and soft
tissues. Because we are dealing with inter-subject registration issues, both bones
and soft tissues need to be deformed (in the intra-subject registration case,
individual bones can be registered with rigid-body registration methods). However,
the amount of deformation typically observed for bony and soft tissue structures is
very different, i.e., two livers can have vastly different shapes and sizes when the
overall shape and size of individual bones vary little across subjects. This suggests
using transformations whose physical properties vary spatially. These transfor-
mations should be relatively stiffer for bony structures than they are for soft tissue
structures. Our algorithm allows us to do pre-cisely this. As mentioned above,
regularization of the deformation field in our algorithm is obtained by imposing
constraints on the relative value the coefficients associated with adjacent basis
functions. In practice, we impose a threshold on the difference between the values
of these coefficients. The smaller the threshold, the stiffer the transformation is. We
can thus define what we call stiffness maps, which are maps that specify the value
of this threshold in various regions of the image. In previous work [13], we have
shown that this feature improves atlas-based segmentation results when the patient
image volume contains very large ventricles or space-occupying lesions. Here, we
create a simple binary stiffness map: the transformation is constrained to be stiffer
over bony structures than over soft tissue structures. Results obtained when using
two stiffness values, one for the bones and the other for soft tissue, improve when
compared to those obtained with a single value.

3 Results

Our approach has been evaluated on two types of images: whole body mouse
scans and upper body human scans. We used an Imtek MicroCAT II small animal
scanner to generate two 512x512x512 mouse CT volumes, with a voxel resolution of
0.125x0.125x0.125mm’. Human data sets are 512x512x184 CT volumes with a voxel
resolution of 0.9375x0.9375x3mm’. Figure 1 shows results obtained with the skeletons
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of mouse volumes. The left panel
shows the two skeletons in their
original position. The right panel
shows the same but after point-based
registration. Figure 2 illustrates results
obtained when both steps are applied.
The left panel shows one CT slice in
one volume (the source) and the right
panel is the corresponding slice in the
other volume (the target); note the
large differences in size, shape and
posture between these volumes. The
middle panel shows the results we
obtain when registering the source
volume to the target volume. To
facilitate the comparison, yellow
contours of the lung have been drawn
on the target image and copied on all
the other ones.

Figures 3 and 4 show results we have obtained with upper torso CT images, and
they illustrate the advantage of using two stiffness values. In both figures, the left
panel is the source image, the right panel the target image. The second, third and
fourth panels show the source volume registered to the target volume using (1) a
stiff transformation, (2) a very elastic transformation, and (3) a transformation with
two stiffness values. In figure 3, only bones are shown. In figure 4, the entire
images are shown. When a stiff transformation is used, bones are deformed in
physically-plausible ways, but soft tissues are not registered very accurately (arrows
on the second panel of figure 4). When a more elastic transformation is used, bones
are deformed incorrectly (regions highlighted in the third panels from the left).
Using two stiffness values permits transformations to be computed that lead to
satisfactory results both for the bony and soft tissue regions.

Fig. 1. Bony structures in two CT volumes
a) before the registration and b) after the
registration

Fig. 2. One coronal slice in the source volume (left); the corresponding slice in the target
volume (right) , and the transformed source image after registration (middle)
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Fig. 3. a) Skeleton of the source image, e) skeleton of the target image. b), c), and d) source
skeleton registered to target skeleton using a stiff transformation, a very elastic transformation,
and two stiffness values, respectively.

Fig. 4. a) One coronal slice in the source volume, e) corresponding slice in the target volume,
b), ¢), and d) source image registered to target image using a stiff transformation, a very elastic
transformation, and two stiffness values, respectively

Figure 5 illustrates results we have obtained with another set of upper torso volumes.
The left panel shows one sagittal image in one of the volumes (the source). The right
panel shows the slice with the same index in the second volume (the target) prior to
registration. The second, third, and fourth panels show results obtained with our
intensity-based algorithm alone, results obtained with point-based registration alone,
and results obtained when both approaches are combined, respectively. The second
panel shows typical results obtained when non-rigid registration algorithms cannot be
initialized correctly. The overall shape of the registered volume appears correct but

Fig. 5. a) One sagittal slice in the source volume, e) the corresponding slice in the target
volume, b), ¢), and d) registration results obtained with intensities alone, points alone, and with
both methods combined, respectively
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bones have been deformed incorrectly. A closer inspection of the deformation field
(not shown here for lack of space) also shows that the deformation field is very
irregular. The deformation field obtained with the point-based registration is smooth
but the registration relatively inaccurate, as shown in the third panel. As can be seen
in this panel, the shape of the head and its size are not exactly similar to those shown
in the right panel. Similarly, the sizes of the vertebrae are incorrect. The fourth panel
shows that the best results are obtained by combining both approaches.

4 Conclusions

In this paper, we present what we believe is the first automatic approach for the
registration of articulated structures applicable to inter-subject registration problems.
Existing work typically relies on a combination of piecewise rigid body transformations,
which requires localizing joints in the image accurately. This is time-consuming and
hard to automate. In our method, the process can be fully automated by registering first
the entire skeleton using a point-based method that does not require labeling of homo-
logous points. This produces a transformation, which may not be extremely accurate but
is nevertheless sufficient to initialize an intensity-based non-rigid registration algorithm.
The second step leads to an accurate registration. We also show that better results can
be obtained with two stiffness values than with one. Future work includes improving the
way points are selected for the point-based registration algorithm and conducting a
quantitative evaluation and comparison of these algorithms.
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Abstract. The hierarchical subdivision strategy which decomposes the
non-rigid matching problem into numerous local rigid transformations is
a very common approach in image registration. For multi-modal images
mutual information is the usual choice for the measure of patch similar-
ity. As already recognized in the literature, the statistical consistency of
mutual information is drastically reduced when it is estimated for regions
covering only a limited number of image samples. This often affects the
reliability of the final registration result.

In this paper we present a new intensity mapping algorithm which
can locally transform images of different modalities into an intermediate
pseudo-modality. Integrated into the hierarchical framework, this inten-
sity mapping uses the local joint intensity histograms of the coarsely reg-
istered sub-images and allows the use of the more robust cross-correlation
coefficient for the matching of smaller patches.

1 Introduction

Medical imaging technologies have become indispensable components in most
clinical procedures during the last years. The wide availability of different imag-
ing modalities tremendously increased the need for fast and accurate multi-modal
image registration methods. Several surveys and textbooks (e.g. [1,2,3,4,5] and
references therein) have already been published providing a broad and general
overview of image registration techniques. The most accurate methods for non-
rigid registration are based on physical models but they proved to be computa-
tionally very expensive. Therefore, various simplifications have been investigated
based on different heuristics to approximate the underlying physical reality by
alternative mathematical models. One of these approaches has been proposed
by Likar and Pernus in [6]. They developed a hierarchical image subdivision
strategy that decomposes the non-rigid matching problem into an elastic inter-
polation of numerous local rigid registrations of sub-images of decreasing size.
As the local registrations are achieved by maximizing mutual information (MI),
the algorithm can be generally applied both for mono- and multi-modal cases.
Unfortunately, the usage of MI for image matching has several drawbacks in
connection with either interpolation artifacts or the statistical consistency of

J.P.W. Pluim, B. Likar, and F.A. Gerritsen (Eds.): WBIR 2006, LNCS 4057, pp. 26-33, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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MI (e.g. in [5,6,7,8]). We have demonstrated in [9] that the related problems
are becoming increasingly serious during the image subdivision process due to
the decreased number of samples used to estimate the two-dimensional joint in-
tensity histogram. This decrease of the MI’s statistical consistency weakens the
performance of the entire non-rigid registration and limits the number of levels
which can be generated during the hierarchical subdivision. It would be there-
fore desirable to replace MI with a more robust similarity measure. However,
the usage of the cross-correlation coefficient (CC) favored by most researchers is
restricted to the mono-modal case.

In the past few years, several methods have been proposed either for esti-
mating a functional relationship between the intensities of images from different
modalities or for the direct estimation of similarity measures which integrate
this functionality in their definition. For example, the VIR criterion presented
by Woods in [10] proved to be efficient for matching PET with MR images. In [11]
an extension was presented that removed the need for manual segmentation and
extended the method’s applicability to other modality combinations. Another
extension of Woods’ VIR criterion called correlation ratio is described in [12].
Later on, in [13], an adaptive intensity correction was proposed that combines
the correlation ratio with the demons algorithm [14]. A completely different ap-
proach for CT-MR cross-registration is described in [15] and bases on a simple
intensity mapping of the original CT image such that bone and air have identical
appearance as in an MR image. All the proposed methods, however, lead to the
appearance of fake structures within the mapped image, which strongly limits
their usability. These ghost features caused by imaging details which are not
visible in both modalities lead to ambiguities that result in misregistrations.

In this paper we propose a local intensity mapping that allows to switch from
MI to the more robust CC at finer levels in the registration hierarchy. In con-
trast to the already existing approaches that estimate the functional relationship
from one image modality to the other, we propose to build a common intermedi-
ate pseudo-modality. The intensities in both images are mapped simultaneously
onto a common contrast space, which is not necessarily one of the two source
intensities, but rather a combination of them. Although the transformed images
may locally resemble one of the modalities, on an overall scale this is not true.
In this paper we present a novel mapping, which is demonstrated on CT/MR
image registration but is generally applicable for any combination of modalities.

2 Method

The mapping we propose in this paper is relying on the observation that the
performance of a registration algorithm will not increase if one of the images
contains more structural details than the other. On the contrary, details visible in
only one of the images can lead to ambiguities by inducing misleading optima in
the similarity measure. The performance of the registration procedure thus only
depends on those image features which exist simultaneously in both modalities.
The proposed mapping procedure builds an intermediate pseudo-modality of
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Fig. 1. Transversal slices of rigidly registered (a) CT and (b) MR acquisitions of the
head

the images that will show only the common image features and drop additional
details prominent in only one of the modalities.

Figure 1 depicts two corresponding transversal slices from rigidly registered
3D volumes of 512 x 512 x 50 voxels of size 0.39 x 0.39 x 0.6 mm3. Obvious dif-
ferences can be noticed not only in the intensities of most of the structures but
also in the visibility of details of the tissues. The mapping between the intensities
is neither linear, nor invertible.

We propose to estimate the functional relationship between the intensities of
the different modalities by using the information contained in the joint histogram
of the coarsely registered images. In a first step the mean values and the variances
of all MR image (B) voxels are calculated, which correspond to the normalized
intensity values a = 0..255 in the CT image (A) using the joint histogram H 4p:

pia(a) = > vep Hap(a,b) b
> vep Hap(a,b)
o2 (a) = >ven Hap(a;b)- (b— pa(a))?
ZbeB Hap(a,b)
and likewise for the MR image voxels b = 0..255:

(1)

(2)

pi(b) = ng‘fgj;‘zﬁ')“ (3)
Saea Han(a,0)(a = ps(h))’

B0 =T 5 Hap(a,b)

(4)

For each of the histogram bins of the CT and MR, a flag f,, f, and a counter
Ca, Cp 18 defined. The flag encodes whether an intensity value should be mapped
by the corresponding p function or should be kept unchanged:

1 map to the other modality
fas fo = 0 undefined in the joint histogram (5)
—1 keep the value unchanged.
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The counters are increased by one, whenever an intensity from one modality
is mapped onto its bin. As it is our aim to suppress structures in a patch which
are not visible in the other modality, the flags select intensities according to the
image with smaller variance. The counters are also updated according to this
decision:

Va if 0a(a) <op(pala)) — fa=1, inc. counter c,,(q) = Cy @) + 1 (6)
" \ifoa(a) > op(pala)) — fo = —1, inc. counter ¢, = ¢, + 1

and likewise for the MR image:

v if op(b) <oa(up(b)) — fo =1, inc. counter ¢, m) = Cuyp) +1 %
» \ifop((b) > oa(up(d)) — fp = —1, inc. counter ¢, = ¢, + 1.

As can be seen in the schematic joint histogram in Fig. 2(a) three different
regions can be distinguished according their variance. For the regions where
fa > fo and f, < fp the mapping direction is unambiguous and indicated with
an arrow. In Fig. 2(b) the same regions are labeled according to the flag notation.
If 04 ~ op no clear decision can be made. For the intensities in this ambiguous
region (see Fig. 2(c)) it is very likely that the value b; will be mapped to a; and
a; which in turn is associated with by. Accordingly, the mapping function v4(a)
for A can be written as:

if fa > f/LA(a) - /LA(G)
Va =0.255, b =va(a) =  if fo < fu,@ —a (8)
if fo = fu.i(a) — ambiguity.

BA oA >0pB B
br
oA R OB fa=To
op > 04

b

> ¥ >

A Qi A

(@) (©)

Fig. 2. Schematic joint histogram with (a) three regions defined by their variances,
(b) the three regions labeled with the flag notation, and (c) illustration of ambiguities

Two different ambiguous cases can be distinguished: (1) fo = fu,@) = 1, i.e.
the intensities in both modalities are to be changed and (2) fo = fu.(a) = —1
i.e. both of them should be kept. The mapping counters c4, ¢, , () are used to
resolve such situations:

if co > cpy@) — a )
if ¢ < Cuy(a) — mala).

vfa = f/l.A(D.)? b= VA(G) = {
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Corresponding formulas for Eq. 8/9 are used for vg(b). The ambiguities have
to be resolved iteratively until no further changes in the resulting mappings are
detected. Figure 3 and 4 show examples of CT /MR mappings using the proposed
method.

3 Results

Two representative examples were chosen to demonstrate the advantages of inte-
grating this intensity mapping procedure into the hierarchical registration, such
that CC can be used as the similarity measure instead of MI after a certain
level of the hierarchy has been reached. Two regions of interest have been se-
lected for illustration, marked with white squares on Fig. 1. All patches are of
64 x 64 x 17 voxels, equivalent to the 4" level of the subdivision.

The first experiment was performed with an image pair (upper white squares in
Fig. 1) containing rich structural details. Figure 3 shows the original patches, their
intensity mapped versions and the behavior of MI (on the original) and CC (on the
intensity mapped images) for horizontal displacements up to £10 pixels. It can
be seen that for regions having sufficient structural information, both similarity
measures are sufficiently stable for finding the correct registration position.

E -
(a) (b)
. . Horizontal displacement

(d) (e) (f)

Fig. 3. (a,b) Initial patches showing rich structural details and (d,e) their intensity
mapped versions. (¢) The response of MI on the original and (f) CC on the intensity
mapped images to horizontal translations.
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A different region of interest (lower white squares in Fig. 1) has been used for
the same experiment. While the corresponding CT patch is almost uniform, the
MR image shows significant contrast within the brain tissue covered. This is a
classical case in which MI generally fails to find the correct registration position,
see [9]. Figure 4 shows the original and intensity mapped patches together with
the comparison between the MI and the CC responses to horizontal translations.
While CC remains robust for this region, too, MI shows highly unreliable behav-
ior. Note, that our hierarchical strategy partitions only the floating image and
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Fig. 4. (a,b) Patches with major differences of tissue contrast in CT and MR. (d,e) In-
tensity mapped versions of the images. (¢) The response of MI on the original and
(f) CC on the intensity mapped images to horizontal translations.

40
G

Fig.5. (a) CT and (b) MR sample slice of the spine volume used for the validation
tests (c) schematic of the artificial deformation field

the local similarity measure for a partitioned sub-image is calculated from its
volume of overlap with the entire reference image. Therefore, only the sub-images
on the border of the volume are effected by an eventual change in the overlap-
ping volume. According to our experience, this leads seldom to misregistrations
which can fully be corrected by the subsequent regularization step.

In order to quantitatively analyze the advantages of integrating the proposed
intensity mapping strategy into the hierarchical non-rigid registration procedure,
an artificial registration scenario which consists of recovering a predefined de-
formation field was used. The underlying pre-registered CT/MR datasets of the
spine had a size of 512 x 512 x 60 voxels of dimension 0.47 x 0.47 x 1.25 mm?,
see Fig. 5(a,b). The CT dataset was split in 4 equally sized blocks of size
256 x 256 x 60 voxels. Two of these blocks were rigidly rotated as shown in
Fig. 5(c). The deformed volume was then interpolated using thin plate splines
(TPS) and partial volumes. The MR volume was then registered using (1) MI
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Table 1. Registration error calculated for the entire volume as well as for the local
region marked with a white square in Fig. 5(a,b)

Similarity Measure

Results Direction MI MI+CC Improvement
entire  in plane (zy) 0.5157 £0.4137 mm 0.4795 + 0.4617 mm  7.02%
volume out of plane (z) 0.4262 £ 0.5615 mm 0.3990 + 0.4423 mm 6.38%
overall (zyz) 0.7380 &+ 0.6240 mm 0.6790 £ 0.5804 mm 7.99%
local  in plane (zy) 0.3641 £ 0.2205 mm 0.2377 £0.1782 mm  34.71%
region out of plane (z) 0.2768 £ 0.2743 mm 0.2379 + 0.2085 mm  14.05%
overall (zyz) 0.4987 +0.2904 mm 0.3653 £ 0.2342 mm  26.74%

during the entire hierarchical registration procedure and (2) when switching MI
to CC at the 4*" hierarchical level. The recovered deformation fields were then
compared to the known artificial deformation field.

Table 1 summarizes the average and standard deviation of the registration
error for the entire dataset and for the region marked with a white square in
Fig. 5(a,b). As the gain of switching from MI to CC only applies to a small
number of sub-images, the average registration error over the entire volume
improves only slightly. However, the registration error improved up to 34.71%
for the selected region (80 x 120 x 40 voxels) where MI generally tends to fail.

4 Conclusions

As has been previously discussed in the literature, MI shows unsatisfactory be-
havior for the matching of structureless or small image patches due to the lack
of statistical consistency caused by the small number of available image samples.
CC proved to be more robust, but it can not be directly used for cases, where
the intensity relation between the modalities is non-linear. The mapping strategy
presented by this paper enables the combination of both similarity measures for
multi-modal registration procedures relying on a hierarchical subdivision strategy.
At the first levels of the hierarchy, where the partitions are still relatively large,
MI can be used to coarsely register the corresponding patches. After this stage,
the images can be transformed to a pseudo-modality using the presented mapping
technique and the similarity measure can be switched to the more robust CC.

With the proposed hybrid approach that uses MI for the first levels and CC for
the last few levels, two important properties of these similarity measures can be
seamlessly combined in a unique manner, namely the multi-modal capabilities of
MI with the robustness of CC without increasing the computational complexity
of the underlying algorithm.
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Abstract. We present a new objective function for the registration of
multi-modal medical images. Our novel similarity metric incorporates
both knowledge about the current observations and information gained
from previous registration results and combines the relative influence of
these two types of information in a principled way. We show that in
the absence of prior information, the method reduces approximately to
the popular entropy minimization approach of registration and we pro-
vide a theoretical comparison of incorporating prior information in our
and other currently existing methods. We also demonstrate experimental
results on real images.

1 Problem Definition

Multi-modal intensity-based registration of medical images can be a challeng-
ing task due to great differences in image quality and resolution of the input
data sets. Therefore, besides using the intensity values associated with the cur-
rent observations, there have been attempts using certain statistics established
at the correct alignment of previous observations in order to increase the ro-
bustness of the algorithms [4,1]. One such example is applying the joint prob-
ability of previously registered images as a model for the new set of images.
That approach requires one to assume that we have access to the joint distribu-
tions of previously registered images and also that the resulting joint distribu-
tion model accurately captures the statistical properties of other unseen image
pairs at registration. The accuracy of such methods, however, is biased by the
quality of the model. This motivates an approach which is both model-reliant
and model-free in order to guarantee both robustness and high alignment ac-
curacy. Such ideas have been recently formulated by Chung! and Guetter [3].
Chung et al. have proposed the sequential utilization of a Kullback Leibler (KL)-
divergence and a Mutual Information (MI) term, while Guetter et al. incorpo-
rate the same two metrics into a simultaneous optimization framework. In both
methods there is an arbitrary parameter that decides how to balance the two
influences.

! Private communications with Prof A. Chung (The Hong Kong University of Science
and Technology).

J.P.W. Pluim, B. Likar, and F.A. Gerritsen (Eds.): WBIR 2006, LNCS 4057, pp. 34-42, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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2 Proposed Method

We formulate the registration task by balancing the contributions of data and
prior terms in a principled way. We follow a Bayesian framework and introduce a
prior on joint probability models reflecting our confidence in the quality of these
statistics learned from previously registered image pairs.

We define a normalized likelihood-based objective function on input data sets
uw and v by optimizing over both transformation (7') and the parameters of the
unknown joint probability model (©):

arg max F(T,0) = arg max ]1] log p([u, vr); T, ©). (1)
If we assume that © encodes information about intensity value joint occurrences
as parameters of an unknown multinomial model in N independent trials and
let the random vector Z = {Z1,...,Z,} indicate how many times each event
(joint occurrence of corresponding intensity values) occurs, then Y .9_, Z; = N,
where N is the size of the overlapping region of the observed images. Also, the
probability distribution of the random vector Z ~ Multinom(N; ©) is given by

g %
=17

N 5
P(Z12217...7Zg:,zg): 1H9'1‘ (2)

According to this interpretation, Z summarizes the event space of the joint inten-
sity samples [u, v7] and N indicates the observed sample size. Such a representa-
tion is convenient as the #; parameters naturally correspond to the parameters of
the widely used histogram encoding of the joint statistics of images. Given g num-
ber of bins, the normalized contents of the histogram bins are © = {61, ...,0,}
with 6; > 0 and Zle #; = 1. Additionally, given the multinomial representa-
tion, prior information about the bin contents can be expressed by using Dirichlet
distribution, the conjugate prior to a multinomial distribution.

Dirichlet distributions are multi-parameter generalizations of the Beta distri-
bution. They define a distribution over distributions, thus the result of sampling
a Dirichlet is a multinomial distribution in some discrete space. In the case where
© = {01, ...,0,} represents a probability distribution on the discrete space, the
Dirichlet distribution over © is often written as

g

[Tor" 3)

=1

1
Dirichlet(©; w) = Z(w)
w

where w = {wi,ws,...,wy} are the Dirichlet parameters and Vw; > 0. The
normalization term is defined as

9 I'(w;
Z(w) — i=1 ( l)

r(S%, w)’ @

where
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We, however, use another encoding of the distribution. We assign w; = am;,
where a > 0 and >"7_, m; = 1. Accordingly,

g g

aM H 9 ozm7—1) am H 9 (am;—1) ] (6)

1:1 1=1 v =1

Dirichlet(©; a,, M)

This representation is more intuitive, as we can interpret M ={my, ma, ..., my}
as a set of base measures which, it turns out, are also the mean value of ©, and
« is a precision parameter showing how concentrated the distribution around M
is. We can also think of «: as the number of pseudo measurements observed to
obtain M. The higher the former number is, the greater our confidence becomes
in the values of M. When using a Dirichlet distribution, the expected value and
the variance of the © parameters can be obtained in closed form [2]. They are

mz(l — mz)

E(6;) =m; and Var(d;) = ala+ 1)

(7)
Later we also need to compute the logarithm of this distribution which is

) f[e?‘mi”] ®)

log [Dirichlet(©; o, M)] = log

i=1

g
=log [T 6™ " ~log [Z(aM))] (9)
i=1

log(0,*™ V) ~ log [Z(aM)] (10)

|
AMQ

i=1

(am; — 1)log6; — log [Z(aM)]. (11)

I
KM‘“’

N
Il
—

Thus incorporating the prior model we can write a new objective function as:
T =
argmax 7(T’, 0)
1
= argmax - loglp([u, vr]; T|0)p(O)] (12)

= argmax ]1] [log p([u, vr]; T'|©) + log Dirichlet(©; aM )] (13)
1 9
= argmax log p([u, vr]; T|©) + ;(ami —1)log6; —log Z(aM)| .(14)

We may choose to order the optimization of T and @ and require that only
the optimal transformation T be returned. We denote the distribution parame-
ters that maximize the expression in brackets to be optimized as Or. This, in
fact, corresponds to the MAP parameter estimate of the multinomial parameters
given the image data and some value of T. If we indicate the KL divergence of
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distributions as D and the Shannon entropy measure as H, the aligning trans-
formation Tpir can be expressed as [12]:

N g
1 N 1 -
Toir = arg max [N glogp(u(xi), (T (x:)); T|O7) + N ;(ami —1)log 971-]
(15)

. . 1 < .
~ argmin [D(pTlpT,@T) +H(pr) = Z;(ami —1)log 9@1 ; (16)

where pr is the true probability distribution of the input observations given
parameter 7" and p;. 5 is the estimated model joint distribution parameterized

by T and Or. The newly proposed objective function can be interpreted as the
composition of a data- and a prior-related term. The former expresses discrep-
ancies between the true source distribution and its estimated value, while the
latter incorporates knowledge from previous correct alignments. As it might not
be intuitive how that information influences the alignment criterion, in the fol-
lowing, we further manipulate the third term in Eq.(16). The prior-related term
in Eq.(16) can be expanded into a sum of two terms:

1< N a & 5 1< 5
—NZ(ami—l)logGTi :—NZmilogGTi + N;logﬁn. (17)

i=1 i=1

If we assume that both the base parameters of the Dirichlet distribution M =
{m1,...,my} and the © = {01, ...,0,} parameters represent normalized bin con-
tents of histogram encodings of categorical probability distributions Pj; and
Pg,.» respectively, and furthermore, if we denote a uniform categorical probabil-
ity distribution function by Py where each of the g number of possible outcomes

equals (;), then we can approximate the prior-related term through:

g g
« A 1 A
N E_l m; log O, + N ‘_E 1 log 01, =

= O [PPulPs,) + HPA] + > toabr, (18)
= ]OQ [D(PMII%T) +H(PM)} - ]“é [D(PU||7>éT) + H(PU)} . (19

After dropping terms that are constant over the optimization, the objective
function from Eq.(16) can then be expressed as

. R [e% g
Tow ~ argmin [D(prlpye,) + Hpr) + | D(Pa|Ps,) = % D(PulPs,)] .
(20)

Therefore, our new registration objective can be interpreted as the weighted
sum of four information theoretic terms. We refer to them as the data terms,
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the prior term and the estimation term. The first two terms, the data-related
terms, indicate how well the observations fit the model given optimal distri-
bution parameters éT. The third term measures the KL-divergence between
two categorical distributions over the parameters describing the pseudo and the
current observations and the fourth term evaluates the KL-divergence between
two other categorical distributions, the uniform and the one characterizing the
parameters of the current observations. Note, as the uniform distribution has
the highest entropy among all, maximizing the KL-divergence from it is very
similar to minimizing the entropy of the distribution. As NN is fixed and given
by the number of the observed input intensity pairs, the weighting proportion
depends solely on «, the precision parameter of the Dirichlet distribution. It is
this value that determines how much weight is assigned to the prior term or in
other words it ensures that the mode of the prior is centered on the previously
observed statistics. That arrangement is intuitively reasonable: when « is high,
the Dirichlet base counts are considered to originate from a large pool of previ-
ously observed, correctly aligned data sets and thus we have high confidence in
the prior; when « is low, prior observations of correct alignment are restricted to
a smaller number of data sets thus the prior is trusted to a lesser extent. Inter-
estingly, most often when one relies on fixed model densities, it is exactly this «
value that is missing, i.e. there is no notion about how many prior registered data
sets have been observed in order to construct the known model distribution. We
also point out that by discarding the prior information and assuming that the
distribution estimation process is sufficiently accurate, the objective function is
approximately equivalent to the joint entropy registration criterion.

3 Preliminary Probing Experiments

In order to experimentally verify the previously claimed advantages of our novel
registration algorithm, we designed a set of probing experiments to describe the
capture range and accuracy of a set of objective functions. A probing experiment
corresponds to the detailed characterization of an objective function with respect
to certain transformation parameters. It helps to describe the capture range (the
interval over which the objective function does not contain any local optima
besides the solution) and accuracy of the objective function.

‘We compared the behavior of our method to that of three others: joint entropy
[9], negative mutual information [5,11] and KL-divergence [1]. The first two
of these methods only consider data information and the third one relies on
previous registration results. Ours incorporates both. It thus benefits from the
current observations allowing for a well-distinguishable local extrema at correct
alignment and also from previous observations increasing the capture range of
the algorithm.

The input data sets were 2D acquisitions of a Magnetic Resonance Imaging
(MRI) and an echoplanar MRI (EPI) image (see Fig. 1). Historically, the reg-
istration of these two modalities has been very challenging because of the low
contrast information in the latter [8]. We carried out the probing experiments in
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(a) (b)

Fig. 1. 2D slices of a corresponding (a) MRI and (b) EPI data set pair

the y- (or vertical) direction. This is the parameter along which a strong local
optimum occurs in the case of all the previously introduced objective functions.
In order to avoid any biases towards the zero solution, we offset the input EPI
image by 15 mm along the probing direction. Thus the local optimum is expected
to be located at this offset position — and not at zero — on the probing curves.
The objective functions were all evaluated in the offset interval of [-100, 100]
mm given 1 mm step sizes.

The probing experiment results are displayed in Fig. 2. In the case of joint en-
tropy (JE), we find a close and precise local optimum corresponding to the offset
solution location. However, the capture range is not particularly wide; beyond
a narrow range of offset, several local optima occur. In the case of negative MI,
the capture range is just a bit wider. The KL objective function, as expected,
increases the capture range. Nevertheless, its accuracy in locating the offset op-
timal solution is not sufficient. In fact, around the expected local minimum the
curve of the objective function is flat thus preventing the precise localization of
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(a) Probing results (b) Close-up of the probing results

Fig. 2. Probing results related to four different objective functions: joint entropy, MI,
KL, our method (top-to-bottom, left-to-right)
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the solution. The probing curve of our novel similarity metric demonstrates both
large capture range and great accuracy. Thus relying on both previous registra-
tion results and the current observations, this new metric is able to eliminate
the undesired local minimum solutions.

4 Connecting the Dirichlet Encoding to Other Prior
Models

Finally, we diverge slightly from our main analysis. We draw similarities between
the Dirichlet and other encodings of prior information on distribution parame-
ters. Such an analysis facilitates a better understanding of the advantages of the
Dirichlet encoding and it creates a tight link with other methods.

We start our analysis by showing that the maximum likelihood solution for
the multinomial parameters @ is equivalent to the histogrammed version of the
observed intensity pairs drawn from the corresponding input images. Then, us-
ing these results, we demonstrate that the MAP estimate of the multinomial
parameters (with a Dirichlet prior on them) is the histogram of the pooled data,
which is the combination of the currently observed samples and the hypothetical
prior counts encoded by the Dirichlet distribution.

4.1 ML Solution for Multinomial Parameters

In this section, we rely on the relationship that the joint distribution of the
observed samples can be obtained by joint histogramming and the normalized
histogram bin contents can be related to the parameters of a multinomial dis-
tribution over the random vector Z. Then the probability distribution of the
random vector Z ~ Multinom(N; ©) is given by

| g
P = 21,0 Dy = 2g) = o NG (21)
i=1 % i=1
Again, according to this interpretation, Z summarizes the event space of the
joint intensity samples [u,vr] and N indicates the observed sample size. If we
want to then optimize the log version of this expression with respect to the ©
parameter, we write

O = arg max log H g7 (22)
—1 Z =1
g
= ilog0;. 2
arg max ;Z og 6 (23)

In other words, when searching for the maximum likelihood parameters of
multinomial parameters, we need to compute the mode of the expression in Eq.
(23) over all 6;’s. This formulation is very similar to that of the logarithm of the
Dirichlet distribution which we formulated in Eq.(11). From probability theory
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we know that the mode of that expression is taken at [a;"'_i?] . Thus if we define
(am; = z; + 1), the mode of Eq. (23) is found at

>

_ami—1  (m+1)—-1 oz

Y oa—g Z?:lzi _Z?:IZZ'.

Accordingly, the optimal 6; parameter — in the maximum likelihood sense — is the
one that can be computed by the number of corresponding counts normalized by
the total number of counts. That is exactly the approximation that is utilized by
the popular histogramming approach. Therefore, we can state that the maximum
likelihood solution for the multinomial parameters is achieved by histogramming.

(24)

4.2 MAP Solution for Multinomial Parameters with a Dirichlet
Prior

In this section we return to the MAP problem formulation that originated our
analysis. Here, in order to find the optimal set of distribution parameters @ with
a prior assigned to them, we have

g g
O = arg max ; z;log 6; + ;(ami —1)log; (25)
g
= i i —1)logb; 2
arg max ;(2 +am )log 6 (26)

If we now define o’/m/, = z; + am,, then the above simplifies to

N a'ml—1 zi+oy—1 zi + ¢

6; = i = = : 27
@)~k T S am) —k T Y sl D
where ¢; = (am; — 1) are counting parameters related to the pseudo counts

of the Dirichlet distribution. That is to say, the optimal 6; parameter — in the
maximum a posteriori sense — is the one that can be computed by the sum of
the corresponding observed and pseudo counts normalized by the total number
of observed and pseudo counts. In other words, in order to compute the optimal
0; parameter, we need to pool together the actually observed and the pseudo
counts and do histogramming on this merged collection of data samples.
Interestingly enough, this formulation forms a close relationship with another
type of entropy-based registration algorithm. Sabuncu et al. introduced a reg-
istration technique based upon minimizing Renyi entropy, where the entropy
measure is computed via a non-plug-in entropy estimator [7,6]. This estimator
is based upon constructing the EMST (Euclidean Minimum Spanning Tree) and
using the edge length in that tree to approximate the entropy. According to
their formulation, prior information is introduced into the framework by pooling
together corresponding samples from the aligned (prior distribution model) and
from the unaligned (to be registered) cases. Throughout the optimization, the
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model observations remain fixed and act as anchor points to bring the other sam-
ples into a more likely configuration. The reason why such an arrangement would
provide a favorable solution has not been theoretically justified. Our formulation
gives a proof for why such a method strives for the optimal solution.

Very recently, another account of relying on pooling of prior and current
observations been published [10]. The authors use this technique to solve an
MRI-CT multi-modal registration task.
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Abstract. Registration of two images requires interpolation to generate a new
image on a transformed grid, and the optimal transformation that maps an im-
age to the other is found by maximizing a similarity measure. Similarity sur-
faces are subject to scalloping artifacts due to interpolation that give local
maxima, and, in some cases, erroneous global maxima. We propose a new lin-
ear filter that is applied to input images and which removes scalloping artifacts
from cross-correlation and mutual-information similarity surfaces. The compu-
tational burden is sufficiently low that it can be used in every iteration of an
optimization process. In addition, this new filter generates image data with con-
stant variance after linear interpolation, making measurements of signal change
more reliable. Following filtering of MR images, similarity surfaces are
smoothed with removal of local maxima and biased global maxima.

1 Introduction

In intensity based registration, one finds the transformation that maximizes a similarity
measure which quantifies the alignment of two data sets (see [1] for a recent survey).
Typical examples of similarity measures are mutual information and cross-correlation
[2]. Significant scalloping artifacts can be observed in the cross-correlation and mutual-
information surfaces. Two major problems arise from these perturbations: local maxima
may hinder any optimization algorithm, and global maximum may happen not for the
optimal transformation parameters.

Some studies have determined the origins of perturbations. During registration,
transformation of the floating image to the reference image requires an interpolation
step and often linear interpolation is used because it is one the simplest and one of the
fastest. Pluim et al. [3], showed that interpolation is the prevalent cause for the
scalloping artifacts. They showed that it happens even in partial volume interpolation
method introduced by Maes et al [4], and they concluded that sub-voxel accuracy
as a result is unreasonable. Further analysis by Ji et al. [5] showed that sampling in-
troduced also artifacts. More recently Rohde et al. [6;7] showed analytically that the
scalloping artifacts are mostly due to uneven filtering by the interpolation process.

J.P.W. Pluim, B. Likar, and F.A. Gerritsen (Eds.): WBIR 2006, LNCS 4057, pp. 43 —49, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Several techniques have been proposed to reduce these artifacts. For example, Tsao
[8] showed that they can be reduced by jittering the transformation parameters for
each voxels before nearest neighbor interpolation, and by histogram blurring for the
mutual information computation. Rohde et al. [6;7] found that sinc interpolation re-
duced scalloping. Over-sampling of the image and reduced binning of the joint histo-
gram can also be beneficial [5].

We confirm in this communication that these scalloping artifacts are due to interpola-
tion, and we propose a simple linear filter that completely removes them, smoothing the
cross-correlation and mutual-information surfaces. In the next section we describe
the method. In the following section we show experimental results on MR images. In
the last section, we discuss the impact of this development on image registration.

2 Filter Design

Consider a discrete signal s; defined on a regularly spaced lattice je {1,....N}. We
would like to obtain the value of s, at a different location also defined over a regularly
spaced lattice. Any arbitrary location can be written as a shift over an integer number
of lattice grid plus a real number for in-between the lattice grid. We thus consider a
shift by ac[0,1[, with i=j+¢, and je [J . After linear interpolation, the new signal x;

can be written:
x,=(l-a)s +as,, (1)

This equation can be interpreted as an adaptative linear filter: for =0 or 1, a sim-
ple shift of the lattice is needed, whereas when ¢=0.5 for example, it corresponds to
an averaging filter over two points. More complicated filters such as cubic or spline
interpolation suffer from the same problem albeit to a lower extent [7].

Since linear interpolation corresponds to a filter that depends on the interpolation
location, we suggest designing another filter that will also depend on the interpolation
location, but with the opposite behavior. Such a filter, performed after linear interpo-
lation, would result to a signal with constant variance. We use this criterion and
design a constant variance filter for linear interpolation (cv-lin). To minimize the
computation burden we chose the simplest non-causal filter:

y, =ax,_, +bx, +ax,, 2)
where x’s are samples on the new interpolated grid and y’s are values after application
of cv-lin. We impose the normalization constraint

1—
2a+b:10ra=7b 3)

We specify a and b so that ¢, = Ao, with 0} and o7 the variance of y and s re-

spectively and A€ [ , , a user-defined constant. We derived an equation for the vari-

ance following interpolation and solve to obtain a second-order equation for b with
solution below (derivation will be published elsewhere):
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The denominator exists for every ac[0,1], and the square root is positive for
A>1/3. The value A=1/3 corresponds to the minimal variance achievable with a
three-point averaging filter; i.e. [1 1 1]/3. Given the value of b, one can compute a,
and specify the filter coefficients in (2). With A=0.5, the signal is left unchanged
when it is the most filtered by linear interpolation (i.e. in the middle of grid points).
By choosing A>0.5, cv-lin becomes a high-pass filter where the variance has been
attenuated by linear interpolation more than 0.5; this might find application when
image sharpness is desired. Extension to multidimensional data is straightforward
because each dimension can be filtered independently. There will be as many «’s as
dimensions.

Note that for translation only « is the same for all pixels (one per dimension), but
when rotation is present and for non-rigid body transformation in general, & will be
different for each pixel, and therefore our proposed filter (Eq. 4) needs to be com-
puted for each pixel (different coefficients a and b). The use of a lookup table to im-
plement Eq. 4 improves significantly the computational cost.

3 Method

In order to test our filter we used multiple MR images from different anatomical
parts. We show here typical results only on brain images because of space restric-
tion. Since we would like to analyze the effects of interpolation, we cannot misreg-
ister an image because it would require an interpolation step. Instead we used the
original image as the reference image and we interpolated the same image with
different transformation parameters that included translation (horizontal and verti-
cal) and rotation around the optimal parameters (all zero in this case). Cross-
correlation and mutual-information were computed using standard equations [1;9].
Parameters were varied with a resolution of 0.03 pixels for translation and 0.03
degrees for rotation to assess sub-pixel perturbation. Similarity surfaces were plot-
ted in three dimensions versus two parameters while one parameter was kept con-
stant to its optimal value (zero). Similarity measures were also plotted versus each
parameter individually while keeping the other two constant to their optimal values
(zero).

Two separate cases were considered. First, raw images were used without any pre-
processing. Second, images were filtered prior to the experiments with anisotropic
diffusion filtering [10], and two separate noise realizations were added to each image
to generate two different images. Noise standard deviation is expressed as a percent-
age of the dynamic range of each image.
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4 Results

In Fig. 1, we show similarity curves for translation and rotation, when the floating im-
age is an exact copy of the reference. Both cross-correlation and mutual-information
show the characteristic scalloping artifact, which is removed with application of cv-lin.
In this case, the global maximum always occurs at the correct location.
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Fig. 1. Mutual information and cross-correlation as a function of translation and rotation. In this
experiment the same image was used and misregistered to itself.

In Fig. 2 and 3, we used images having different noise realizations. In this case,
noise realizations were added to a version of the original image filtered to reduce
noise. Results are significantly different from those obtained in the previous experi-
ment. Prior to cv-lin filtering, the global maximum does not occur at the true loca-
tions, and the scalloping artifacts are larger. Following application of cv-lin, the sur-
face is smoothed and the erroneous biases of the global maxima are removed.
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Fig. 2. We redid the same experiment as in Fig 1, but the images were first filtered and different
noise realizations were added to yield two different images. Mutual information is shown for this
2% noise case. Note the global bias and local maxima have been canceled with cv-lin filtering.
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Fig. 3. As in Fig 2, the original image was first filtered and 4% noise was added. Cross-

correlation is shown here as a function of rotation and translation.
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Fig. 4. Cross-correlation surfaces as a function of translation along x- and y-direction. The left
panel shows the original surface with local maxima and global bias. In the right panel after cv-
lin filtering the similarity surface is much smoother without noticeable interpolation-induced
artifacts. Noise was 5%.

In Fig. 4 we show the cross-correlation surface as a function of translation in both
directions to show how the proposed method efficiently removes the interpolation-
induced artifacts.

5 Discussion

When a digital data set needs to be sampled at any arbitrary location, interpolation act as
a spatially variable filter: when a new grid point matches an original one, the data is just
shifted but otherwise unchanged; when a new grid point falls in between two original
ones, the data is averaged. The interpolated data is thus unevenly filtered. As a conse-
quence data features can be variably smoothed and the variance of the noise becomes
variable across the data set. The effects on similarity measured commonly used in
registration methods such as cross-correlation and mutual information are scalloping
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artifacts creating local maxima and global bias. To address those issues we computed a
simple filter that balances the effect of linear interpolation such that the data are evenly
filtered across the data set.

The global bias of registration is reduced. If the optimal transformation happens to
shift the new grid mostly in between the grid points of the original data, the interpo-
lated data would be the most filtered. This results in sharpening of the histogram and
the joint histogram increasing the mutual information measure. Compared to a
slightly different transformation that would move the new grid closer to the original
grid, almost no filtering would happen and the histograms would be unchanged. In
this case the increase of MI due to the filtering could be higher than the increase of
MI because the two data sets are better registered, and the global maximum of the MI
would not happen for the optimal parameters. Similar explanation can be put forth for
cross-correlation. Because cv-lin filters the data homogeneously such problem is
much reduced as shown in the results section.

Local maxima are removed. The previous argument can be made again to explain
the existence of local maxima in the similarity measures. When the transformation
shifts the new grid in between the original grid, an increase in cross-correlation and
the mutual information occurs. These local maxima can obviously trap the most so-
phisticated optimization algorithm. Other methods have been proposed to alleviate
this problem as reviewed in the introduction. Some of them rely on filtering of all the
data to minimize the artifacts with the risk to filter important data features that could
be relevant for the registration. We think that cv-lin better addresses this problem
because it filters the data only where it is needed. The partial-volume method intro-
duced by Maes et al. [4] suffers also from interpolation artifacts as noted in [5] and
[3], further investigation is needed to explore the benefit of cv-lin for this method.

Smoother similarity surfaces favorably impact registration methods. Sub-voxel accu-
racy is much improved in our preliminary tests (not shown) thanks to the removal of
global bias. Convergence of optimization techniques is also improved because local
maxima are reduced, thereby reducing cases where the optimization gets trapped, and
also because a smoother surface increases the accuracy and robustness of derivatives
and Hessian estimation. Since we used a simple linear filter, computation burden is
limited and the new cv-lin filter can be used within existing registration algorithm with-
out much increase in computation time. We are currently working on optimizing the
implementation.

In conclusion, we have proposed a method to remove scalloping artifacts in cross-
correlation and mutual-information. We designed a filter that produces constant vari-
ance in data that have been interpolated with linear interpolation. As a results global
bias and local maxima are removed, which should improved registration methods
based on the optimization of these similarity measures.
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Abstract. One of the most challenging problems in modern neuroimag-
ing is detailed characterization of neurodegeneration. Quantifying spatial
and longitudinal atrophy patterns is an important component of this pro-
cess. These spatiotemporal signals will aid in discriminating between re-
lated diseases, such as frontotemporal dementia (FTD) and Alzheimer’s
disease (AD), which manifest themselves in the same at-risk popula-
tion. We evaluate a novel symmetric diffeomorphic image registration
method for automatically providing detailed anatomical measurement
over the aged and neurodegenerative brain. Our evaluation will compare
gold standard, human segmentation with our method’s atlas-based seg-
mentation of the cerebral cortex, cerebellum and the frontal lobe. The
new method compares favorably to an open-source, previously evaluated
implementation of Thirion’s Demons algorithm.

1 Introduction

Frontotemporal dementia (FTD) prevalence may be higher than previously
thought and may rival Alzheimer’s disease (AD) in individuals younger than
65 years [1]. Because FTD can be challenging to detect clinically, it is important
to identify an objective method to support a clinical diagnosis. MRI studies of
individual patients are difficult to interpret because of the wide range of accept-
able, age-related atrophy in an older cohort susceptible to dementia. This has
prompted MRI studies that look at both the rate and the anatomic distribution
of change [2, 3].

Manual, expert delineation of image structures enables in vivo quantification
of focal disease effects and serves as the basis for important studies of neurode-
generation [3]. Expert structural measurements from images also provide the
gold-standard of anatomical evaluation. The manual approach remains, however,
severely limited by the complexity of labeling 2563 or more voxels. Such labor is
both time consuming and expensive to support, while the number of individual
experts available for such tasks is limited. A third significant difficulty is the
problem of inter-rater variability which limits the reliability of manual labeling
[4]. While rarely available for large-scale data processing, an expert eye remains
valuable for limited labeling tasks that give a basis for algorithmic evaluation.
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Deformable image registration algorithms are capable of functioning effectively
in time-sensitive clinical applications [5] and high-throughput environments and
are used successfully for automated labeling and measurement research tasks. One
challenge is reliable performance on non-standard data, as in studies of potentially
severe neurodegenerative disorders. These types of images violate the basic as-
sumptions of small deformations and simple intensity relationships used in many
existing image registration methods.

Diffeomorphic image registration algorithms hold the promise of being able to
deal successfully with both small and large deformation problems. State of the
art methods also give full space-time optimizations, are symmetric with respect
to image inputs and allow probabilistic similarity measures [6]. We will evaluate
the performance of our symmetric diffeomorphic algorithm for high dimensional
normalization of elderly and neurodegenerative cortical anatomy. We compare
the method to the Demons algorithm which was shown to outperform other
methods in a careful evaluation of inter-subject brain registration [7].

2 Methods

Demons. Thirion’s Demons algorithm [8] is known to perform well in inter-
subject deformable image registration. The method uses an elastic regularizer
to solve an optical flow problem, where the “moving” image’s level sets are
brought into correspondence with those of a reference or “fixed” template image.
In practice, the algorithm computes an optical flow term which is added to
the total displacement (initially zero). The total displacement is then smoothed
with a Gaussian filter. The process repeats for a set number of iterations for
each resolution in a multi-resolution optimization scheme. The method is freely
available in the Insight ToolKit and has been optimized by the ITK community
(www.itk.org).

Dawant et al. used the Demons algorithm for segmenting the caudate nu-
cleus, the brain and the cerebellum for a morphometric comparison of normal
and chronic alcoholic individuals [9]. Their evaluation of the algorithm found rea-
sonable agreement between automated and manual labeling. They also showed
results on the automated labeling of hippocampus but did not evaluate perfor-
mance. Their comparison used the kappa statistic (overlap ratio),

24(R1N R2)

SULE2) =y k1) 4 4(R2)

1)
which measures both difference in size and location between two segmentations,
R1 and R2. The #(R) operator counts the number of pixels in the region, R.
This sensitive measure varies in the range [0, 1] where values greater than 0.8 for
smaller structures and 0.9 for larger structures are considered good.

Symmetric Diffeomorphisms. A diffeomorphism is a smooth, one-to-one,
onto, invertible map. Shortest paths between elements in this space are termed
geodesic. Diffeomorphic methods were introduced into medical computer vision
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[10] for the purpose of providing a group theoretical, large deformation space-
time image registration framework. Current developments in large deformation
computational anatomy by Miller, Trouve and Younes extended the methods to
include photometric variation and to use Euler-Lagrange equations [11]. How-
ever, these methods do not formulate the transformation symmetrically. They
are only symmetric in theory and their implementation requires parallel compu-
tation [12].

Our current work extends the Lagrangian diffeomorphic registration technique
described in [13]. This new formulation has symmetry properties required for a
geodesic connecting two images, I and J, in the space of diffeomorphic transfor-
mations. This formulation accounts for the natural symmetry in the problem:
both images move along the shape (diffeomorphism) manifold. Symmetric diffeo-
morphisms guarantee two properties that are intrinsic to the notion of a geodesic
path: the path from I to J is the same as it is when computed from J to I, regard-
less of similarity metric or optimization parameters. Symmetry is required for
distance estimates and makes results independent of arbitrary decisions about
which image is “fixed” or “moving”.

Our method is also unique in that it guarantees sub-pixel accurate, invertible
transformations in the discrete domain. Driving forces may derive from landmark
similarity with mutual information or other probabilistic measures of appearance
relationships. This flexibility was inherited from our prior work [13]. Finally, the
method is efficient enough to use on single-processor machines and in processing
large datasets.

We define a diffeomorphism ¢ of domain (2, generally, for transforming im-
age I into a new coordinate system by ¢I = I o ¢(x,¢t = 1). The parameters
of these transformations are time, ¢, a spatial coordinate, x, and a velocity
field, v(x) on £2, which is a square-integrable, continuous vector field [14]. The
correspondence maps, ¢, are gained by integrating the velocity fields in time,
d(x,1) =[5 v(¢(x,t))dt; the distance is then D(¢(x,0),d(x,1)) = [ [|v]|zdt,
where L defines the linear operator regularizing the velocity. The functional
norm, || - ||z, induces regularity on the velocity field via linear differential oper-
ator L = aV? + bId (a, b constants).

A basic fact of diffeomorphisms allows them to be decomposed into two parts,
¢1 and ¢o. We exploit this fact to define a variational energy that explicitly
divides the image registration diffeomorphisms into two halves such that I and
J contribute equally to the path and deformation is divided between them. This
prior knowledge can be captured by including the constraint D(Id, ¢ (x,0.5)) =
D(Id, ¢2(z,0.5)) directly in the optimization algorithm. The result is a method
that finds correspondences with equal consideration of both images. Note that
below we will derive the equations assuming intensity difference as a similarity
measure, for simplicity. However, in actuality, we have a variety of statistical
image similarity measures (robust intensity difference, cross-correlation, mutual
information) at our disposal, as in [15], or employ user landmarks as in [13].

Define the image registration optimization time, ¢ € [0,1] where ¢ indexes
both ¢1 and ¢2, though in opposite directions. The similarity seeks ¢; such that
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P, (x,1) P, (2,1)

Fig. 1. An illustration of one curve in the SyN geodesic path between images. The
image at far left and far right are the original images, I and J. The maps, ¢1 and ¢2
are of equivalent length and map I and J to the mean shape between the images. The
full path, ¢ and ¢!, are found by joining the paths ¢; and ¢s.

¢1(x,1)I = J. Recalling the basic definition of diffeomorphisms allows us to
write any geodesic through composing two parts. Then,

o1(x, 1) = J,

¢y (p1(x,1),1 = 1) = J,

G2y (P1(x,1),1 = £),1 — )] = ¢o(z,1 —1)J,
d1(x, 1)1 = ¢a(z,1 —t)J, (2)

converts the similarity term from |¢q(x, 1)I — J| to |¢1(x,t)] — da(z, 1 —¢)J|?. A
visualization of these components of ¢ is in Figure 1. The forward and backward
optimization problem is then, solving to time ¢t = 0.5,

0.5
Esym (I, J) = inf inf { o1l + lwall +

t=0

/\I (P1(t)) — J(d2(1 —t))|*dS2}dt.
Subject to:

v1(0.5) = v2(0.5), [[v1 ()] = lv2(1 = B)II7
with each ¢; € Diff, the solution of:
dgbi/dt = ’Ui(¢i(t)) with (bZ(O) =1d. (3)

Minimization with respect to ¢; and ¢2, upholding the arc length constraint,
provides the symmetric normalization (SyN) solution and also solves a 2-mean
problem. Landmarks may also be included, as in the Lagrangian Push Forward
method [13], by dividing the similarity term, as done with the image match terms
above. This method is quite distinct from inverse consistent image registration
(ICIR) [16] in which a variational term is used to estimate consistency. Further-
more, SyN provides an inverse that is guaranteed to be everywhere sub-pixel
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accurate. This cannot be enforced by the ICIR formulation. Further details on
the numerical methods employed in optimizing this energy may be found in [13].

Implementation. The Demons algorithm is freely available in the standard
ITK distribution and has been quantitatively evaluated by the ITK community.
We have implemented SyN within our extended version of the ITK deformable
image registration framework, described in [17]. Therefore, we are in a position
to measure performance gains by varying only the transformation model, as we
use an identical similarity metric (optical flow). That is, for this study, SyN
will use the itkDemonsRegistrationFunction as implemented in ITK for image
forces. The only difference between the two methods that we compare is in
the transformation model: we are therefore investigating if using our symmetric
diffeomorphisms will enable better automated structure segmentations than the
elastic model used by Demons.

Dataset. We now study the volumetric differences between elderly and frototem-
poral dementia cortex, with particular focus on the frontal lobe. We will compare
the ability of two methods, SyN and Demons, to reproduce results gained from
an expert user’s labeling of our 20 image dataset. The frontal lobe is a major
focus in research on aging, memory loss and dementia.
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Fig. 2. The original FTD image, in upper left, was initially aligned to the atlas, lower
left, via a rigid plus uniform scaling transformation. The subsequent Demons registra-
tion to the atlas, used for labeling, is in lower center. The corresponding grid deforma-
tion is in upper center. The SyN result is in lower right, while the corresponding grid
deformation is upper right. The Demons method does a reasonable normalization, but
leaves the ventricles and other smaller structures only partly normalized. The quadratic
elastic penalty prevents the remaining shape differences from being captured.
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We use a database of 20 T1 MRI images (0.85 x 0.85 x 1 mm, GE Horizon
Echospeed 1.5 T scanner) from 10 normal elderly and 10 frontotemporal demen-
tia patients. Each of the 20 images, along with the BrainWeb atlas, was manually
labeled with the protocol described in [4]. This protocol was shown to be highly
reproducible for both small and large structures via six-month intra-rater reli-
ability and inter-rater reliability measurements. Left hippocampus labeling, for
example, showed a 0.92 intra-rater overlap ratio (equation 1) and 0.83 average
for inter-rater overlap. As the hippocampus is relatively small, these values are
reasonable.

We compare the performance of the SyN algorithm to the Demons algorithm
for automatically labeling this dataset. Both Demons and SyN were used to au-
tomatically segment the whole brain, cerebellum and frontal lobes by registering
the labeled whole head MRI atlas to each individual whole head MRI. The atlas
labelings are then warped by the same transformation into the space of the pa-
tient image. We then compute overlap ratios between the manual and automatic
structural segmentations for each structure. An example comparison of the two
methods is in figure 2.

3 Results and Discussion

Both algorithms produced segmentation results above the minimum threshold
of 0.8 for all structures. A comparison between the average image produced after
normalization of all images by each method is in figure 3. SyN had an average
overlap ratio of 0.932 for cerebrum whereas the Demons value was 0.919; for
frontal lobe, SyN mean = 0.901 while Demons = 0.882; for cerebellum, SyN
mean = 0.883 while Demons = 0.861. We computed Student’s T-test to evaluate
whether SyN outperforms Demons for labeling these structures. SyN produces
statistically significant better (T > 2.5 ) results over the whole dataset for each
of these structures: frontal lobe (P < 0.03), cerebellum (P < 0.04) and cerebrum
(P < 0.016). The gap in performance on frontal lobe (P < 0.018) and cerebrum
(P < 0.003) increases when we focus only on the FTD results. This separation is

SyN E rror Dcm_o ns E rror

Fig. 3. A section of the template image is at left. The average of all elderly images
registered to the template by Syn and Demons are shown next, followed by the asso-
ciated error images (intensity difference between the average and the template). The
Demons average appears to have slightly larger ventricles and fewer sulci, as a result
of a general trend toward underestimating the deformation. This effect is exaggerated,
for Demons, when FTD data is included.
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caused by the presence of larger deformation in the FTD subjects some of which
may not be captured by Demons. Note that, in the past, similar evaluations have
shown Demons to outperform other methods [7].

Clinical Significance. We will now compare the ability of the Demons and
SyN results to estimate the difference in structural volume given by the manual
outlining. We achieve this by using the outlined frontal lobe on the atlas image to
mask each jacobian, J;, as computed from each registration. The volume of the
frontal lobe for individual i is estimated from registration by > (all x in the atlas
frontal lobe) J;(x). We therefore have three distinct measurements of the elderly
and frontotemporal dementia frontal lobe: one from the expert labeling, one from
the Demons algorithm and one automated measure from our SyN method. Next,
we quantify the ability of the regularized, automated normalization methods to
approximate the results gained from the labor intensive manual approach.

FTD and aging both negatively impact memory. However, memory loss in
individuals with FTD is severe and accelerated. We expect this clinical presen-
tation to be reflected in cortical structure, particularly, with FTD, in the frontal
lobe. Here, we focus on lobar volume, as opposed to shape.

If we test for significant differences in size as given by manual labeling, we
find that elderly frontal lobes are larger with a significance of P < 0.0003, a
very strong result. The Demons method does NOT show significant results, with
P < 0.088. The SyN method, on the other hand, does show significant results
with P < 0.030, where all significance values are assessed with permutation
testing. Thus, we can see how an apparently small difference in performance
(as measured by overlap ratio) can have an impact on the study outcome. Note
that the Demons and SyN significance are both smaller than the manual results.
This is caused by segmentation bias towards the normal atlas (which has a
more regular labeling) and the fact that registration-based segmentations are
smoothed (Demons more than SyN), while the manual segmentations are not.
Note that Demons smooths the global transformation but does not restrict to
the space of diffeomorphisms. SyN explicitly smooths only the velocity field,
but restricts to diffeomorphisms, a space which can capture large deformation
differences as occurring in elderly and FTD data.

Conclusion. This preliminary comparison shows the distinct advantage of SyN
for segmenting elderly and neurodegenerative cerebrum, cerebellum and frontal
lobe. Note that, in addition to better performance, SyN provides a dense space-
time map and transformation inverses. The differences in performance are consis-
tent, statistically significant and have a major impact on study outcome. One can
extrapolate even larger differences between SyN and algorithms with lower di-
mensionality than either Demons or SyN. For this reason, along with the theoret-
ical advantages that translate into practical benefits, we promote diffeomorphic
algorithms in neuroimaging research, in particular when studying non-standard
datasets, such as FTD and AD.
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Abstract. Deformation based morphometry is used to detect differ-
ences in in-vivo Magnetic Resonance Image (MRI) of the mouse brain
obtained from two transgenic strains: TASTPM mice that over-express
proteins associated with Alzheimer’s disease, and wild-type mice. MRI
was carried out at four time points. We compare two different meth-
ods to detect group differences in the longitudinal and cross-sectional
data. Both methods are based on non-rigid registration of the images
to a mouse brain atlas. The whole brain volume measurements on 27
TASTPM and wild-type animals are reproducible to within 0.4% of whole
brain volume. The agreement between different methods for measuring
volumes in a serial study is shown. The ability to quantify changes in
growth between strains in whole brain, hippocampus and cerebral cortex
is demonstrated.

1 Introduction

Mouse models are used in many biomedical research areas to study issues rang-
ing from development to drug efficacy. The models are made popular by their
rapid life cycle in comparison to other animals as well as the wealth of genetic
information and the technology available to modify them. The human [1] and
mouse genome [2] project has made a large amount of data available on genes,
which makes our ability to understand disease processes a real possibility. MRI
allows the 3D morphology of anatomical structures to be examined in-vivo. Re-
cent efforts on the use of MRI to study anatomical differences between mouse
strains include [7], [8]. Chen et al [6] reported on significant differences of neu-
roanatomy in three different mouse strains. Kovacevic et al [4] reported on a
variational MRI atlas constructed from nine excised mice brains. Verma et al [5]
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reported that there were sharp contrast between tissue anisotropy changes in
the cortex and in major white-matter fibers during the first 80 post-natal days.

To the best of our knowledge, all existing registration methods have been
applied to ex-vivo mouse brain images. However, the use of ex-vivo images does
not allow serial imaging studies which are aimed at detecting differences across
time within an individual (e.g. atrophy) or within a group. In this paper we
focus on developing methods for MRI of the brain acquired in-vivo. This raises
new challenges for both the computational techniques as well as the image ac-
quisition techniques used in in-vivo studies. In this paper, we demonstrate that
existing image registration techniques are capable of producing acceptable seg-
mentations on in-vivo mouse brains. The longitudinal volumes can be measured
in two different ways, one way is to register everything to a common reference
and the other is to use each animal’s first scan as its control. We explore the
two methods and report on their level of consistency. Finally, we show the abil-
ity of our method to quantify changes in growth between strains in anatomical
structures.

2 Materials and Methods

We have developed image registration techniques which have been applied to
breast images, cardiac motion tracking and brain development in neonates [3].
The global registration between two images is modelled by an affine transfor-
mation and the local registration is described by a free-form deformation (FFD)
based on B-splines. The FFD is modelled as a mesh of control points. Nor-
malised mutual information is used on a voxel-based similarity measure which
is insensitive to intensity changes. The registration is achieved by minimising
the cost function, which represents a combination of the cost associated with
the smoothness of the transformation and the cost associated with the image
similarity [3].

2.1 Data

Animal experiments complied with GSK ethical and UK legal requirements.
Transgenic (Tg) mice were used which over-expressed proteins linked to
Alzheimer’s disease [9]. The transgene leads to abundant deposition of the pro-
tein 0 — amyloid in the brain from approximately 5 months of age. Wild-type
(Wt) mice, which behaves as the C57BI6 background strain, were used as con-
trols. MRI was carried out at 6,9,11 and 14 months of age.

2.2 MR Acquisition Protocol

Prior to MR imaging the mice were anesthetized with isoflurane and their heads
were immobilised in a custom-built head holder. Their core temperature and
spontaneous respiration was monitored during the imaging process and kept con-
stant. After recovery from anesthesia the mice were returned to their home cages.
Images were acquired on a 4.7T Brucker Biospec 40cm horizontal bore magnet
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using 25mm diameter volume receive and 12 cm diameter volume transmit coils.
A multi-slice (120 slices) multi-echo CPMG dataset was obtained using inter-
leaved scans of slice thickness 0.31mm, with final voxel resolution 78 x 78 x 156 um,
was acquired at each time-point. The field of view was 20 x 20 x 18.6mm and
the matrix was 256 x 256. Total imaging time was 2 hours.

During data acquisition, we acquired two interleaved volumes off set by a
half a slice thickness (the sequences S; and S2). This acquisition was repeated
to obtain another image of the same animal (the sequences S3 and S4). The
sequences were interleaved to achieve better pseudo resolutions. An image of an
animal was obtained by merging S; and So. Two images may be obtained of the
same animal by merging S7, So and Ss, S4. During these acquisitions the animals
were left in the scanner and not moved. The S3 and S4 sequences were acquired
in the event animal movement during S; and S;. This provides data to check for
reproducibility in measurements as well the ability to deal with potential loss of
data due to animal motion during scanning.

2.3 Measuring Volumes In-Vivo in Longitudinal Data

Our aim is to carry out volumetric analysis of the brain and its structures over
time. In order to achieve our goal, we require a mouse atlas. We use the LONI
atlas [10] from the Mouse Atlas Project (MAP) as our atlas for segmentation.
All 27 structures labelled in the LONI atlas were propagated into each animals
native space. Since the MR acquisition parameters for the LONT atlas and our
MR acquisitions were different, we register the LONT atlas to one of our animals,
to obtain a segmentation of the brain. This segmentation is then used as the atlas
in our study. Figure 1 shows the mouse brain atlas annotated with 5 structures
for illustration purposes.

Cerebral
Cortex
Hippo-

campus

Fornix
System

= Cerebellum

Fig. 1. The annotated atlas obtained via registering to the LONI atlas
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Segmentation by Direct Atlas Registration. In the first stage the brain
atlas is aligned to each image using an affine registration. Using the affine regis-
tration, an approximate segmentation of the brain for each animal is obtained.
To compensate for residual misalignment after affine registration, the segmenta-
tion is then dilated by 5 voxels. The purpose of the approximate segmentation
of the brain was to improve the speed and accuracy of the subsequent non-
rigid registration. In the second stage, we perform a non-rigid registration of the
mouse brain atlas to each image using the approximate brain mask obtained
previously. We use a multi-resolution approach starting with 2mm control point
spacing going down to 0.25mm. After non-rigid registration, the labels of the
brain atlas, O,4145, are then propagated into the space of each animal to obtain
a final segmentation. We can then compute the growth rate as the difference in
volume across time within the same animal as shown below:

AVi(Oraper) = Vit1(Otaver) — Vi(Oraver)

Segmentation by Indirect Atlas Registration. In the previous method,
each image is segmented by registering the mouse brain atlas directly to each
image. An alternative method for segmentation is to register the images of an
animal to a baseline scan of this animal. In our example, the first time point at
6 months serves as a baseline and the images acquired at 9, 11 and 14 months
are registered to the baseline image using non-rigid registration. The baseline
image can be segmented using the method described in the previous section.
The growth rate for each structure, Ojqper, can be computed by integrating the
determinant of the Jacobian matrix, J, of the transformation between time points
across every voxel, x; belonging to Oj,pe; in the baseline image as shown below:

AV (Oraper) = / det|J ()|

2€Opaseline

3 Results

In this section, we present the results using the two registration methods de-
scribed above. All 27 labels were propagated from the atlas using direct and
indirect atlas registration methoods. Figure 2 shows an illustration of the seg-
mentations obtained using direct and indirect atlas registration methods for an
animal at 9 months. The propagated labels include, MidBrain-HindBrain(MB-
HB), hippocampus, thalamus, fornix system, cerebral cortex and cerebellum.

3.1 Consistency Measure

We wanted to investigate the consistency of our label propagation methods. In
order to calculate the consistency in our segmentations, we transform all segmen-
tations from both registration methods in to a common reference (atlas space).
The Similarity Index(SI) is then calculated between the atlas and segmentaion
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(a) Atlas (b) Direct registration  (c) Indirect Atlas Registra-
tion

Fig. 2. Label propagation using direct and indirect atlas registration. Fig 2(b) shows
segmentation obtained via direct registration and Fig 2(c) shows segmentation obtained
via indirect atlas registration.

obtained via label propagation. The SIs were calculated for all 9 month old
transgenic animals. The metric used to calculate the SI is given below

ST — ‘Iatlas U Isegmentation‘

Iatlas N Isegmentation

Figure 3(a) shows the SI for both methods. We measured the SI for whole
brain, hippocampus, cerebellum, MB-HB and cerebral cortex. The error bars
shows the standard deviations of the SI measurements within groups. As can
be seen from Figure 3(a), we failed to observe any significant differences in the
ST between the two methods described above. However, since indirect registra-
tion requires more registrations to obtain a segmentation relative to the direct
registration method, it is more likely to have the larger registration errors of
the two. Therefore we use the direct registration method as the preferred label
propagation method for all of our experiments from here on.

3.2 Reproducibility of Volume Measurements

In order to investigate the ability of our registrations to reproduce the measure-
ments, we perform the same registration on both images obtained via merging
5159 and 5354 sequences acquired at 6 months using the direct registration
method. Figure 3(b) shows a Bland-Altman plot of the measurements for the
two sets of data for whole brain volume. As can be seen from Figure 3(b) we are
able to reproduce our results to within 0.4% of whole brain volume.
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Fig. 3. Fig 3(a) shows consistency measure of whole brain and anatomical structures
using direct and indirect registration. Fig 3(b) shows Bland-Altman plot of repeated
measurements for whole brain volumes using direct registration method.

3.3 Measuring Growth Rates

We use the direct registration method to measure growth rates for the whole
brain, as well as anatomical structures like hippocampus and cerebral cortex
as defined by the LONI atlas. The growth curves for transgenic and wild-
type are shown in Figure 4(b) and 4(c) respectively. The graph on the y-axis
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Fig. 4. Growth measurements for Transgenic and Wildtype Mouse brains. Growth is
plotted as a percentage of volume change with respect to time point 1 measurement.
Fig4(a) shows the mean volume for TASTPM and WT.
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represents growth as a percentage of the measured volume at 6 months. The x-
axis represents time as discrete points. The error bars shows the group standard
deviations of the measurements at a given time point. The growth curves shown
in Figure 4(b) and 4(c) provides evidence of growth in structures for both strains
of animals. More over our results shows different cross-sectional growth rates for
whole brain, cerebral cortex and hippocampus. However there exists a larger
group variation of structural volumes within the transgenic in comparison to the
wild-type. This variation of measurement is likely to be due to the biological
variability of the genetically modified groups to the controls. Figure4(a) shows
the mean volume at 9 months for transgenic and wild-type.

4 Discussion and Conclusions

We set out to measure longitudinal volume changes in mouse brains using image
registration techniques. To the best of our knowledge, all existing work has been
done on ex-vivo brains. Our data set consisted of two strains of animals (trans-
genic and wild-type) imaged at 6,9,11 and 14 months. In order to analyse our
registration method’s abilities of reproducibility, we measured volumes repeat-
edly on the same animals using two different images of the same animal. Direct
and indirect registration methods were used to measure volumes. We found no
significant differnce in measured volumes between the direct and indirect regis-
tration methods. We were able to quantify growth in between strains which were
statistically significant.

In conclusion, we have shown that our registration methods allows both cross-
sectional and longitudinal studies. We are able to reproduce our whole brain
volume measurements to within 0.4%. The SI values shows a high similarity
between the atlas and the segmentations obtained via registration. We have
also demonstrated the ability to quantify changes in growth between strains
in whole brain, hippocampus and cerebral cortex. In future, we plan to focus
on analysing the diffusion and T2 maps as well as applying sophisticated data
mining techniques.
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Abstract. In this paper, we present the application of canonical correlation anal-
ysis to investigate how the shapes of different structures within the brain vary
statistically relative to each other. Canonical correlation analysis is a multivariate
statistical technique which extracts and quantifies correlated behaviour between
two sets of vector variables. Firstly, we perform non-rigid image registration of
93 sets of 3D MR images to build sets of surfaces and correspondences for sub-
cortical structures in the brain. Canonical correlation analysis is then used to ex-
tract and quantify correlated behaviour in the shapes of each pair of surfaces. The
results show that correlations are strongest between neighbouring structures and
reveal symmetry in the correlation strengths for the left and right sides of the
brain.

1 Introduction

The area of computational anatomy is a rapidly developing discipline [14]. With the in-
creasing resolution of anatomical scans of the human brain, a number of computational
approaches for characterising differences in the shape and neuro-anatomical configura-
tion of different brains have emerged. Morphometric techniques can be classified into
techniques that deal with differences in brain shape (deformation-based morphometry
[3,9]) and those which deal with differences in the local composition of brain tissue
after removing global shape differences (voxel-based morphometry [1]). Even though
both approaches require warping of images into a standard reference space using either
elastic [20, 4, 13] or fluid [8, 7, 6] registration techniques, they differ fundamentally in
the way the resulting deformation fields are used. In deformation-based morphometry
the deformation fields themselves are used to study similarities and differences, while in
voxel-based morphometry these fields are used principally for normalisation. There is
currently an active discussion in the neuroscience community regarding the advantages
and disadvantages of both methods [5, 2].

A prominent example of modelling the variability of neuro-anatomical structures
across a population is the probabilistic atlas of the human brain developed at the Mon-
treal Neurological Institute (MNI) [10] where MR images from 305 subjects were
mapped into stereotactic space, intensity normalised and averaged on a voxel-by-voxel
basis as part of the International Consortium for Brain Mapping (ICBM) [19]. An al-
ternative approach uses statistical models such as active shape models [12] or active
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appearance models [11] to represent the variability of the anatomy across subjects. Sta-
tistical shape modelling refers to the analysis of the shapes of sub-structures (such as the
lateral ventricles in the centre of the brain) and aims to describe their variation across
subjects and between groups of subjects (e.g., comparing ventricle size and shape be-
tween Alzheimer’s sufferers and age-matched normals). Work on shape modelling is
limited by the generally unsolved problems of how to segment these structures and de-
termine correspondences across subjects, and also by the relatively unexplored area of
how different structures vary statistically relative to each other within the brain. The
latter problem will be addressed specifically in this paper.

In this paper we describe the application of canonical correlation analysis for the
analysis of the inter-structure shape variation within the brain. Canonical correlation
analysis (CCA) is a multivariate statistical tool for describing and quantifying correlated
variation between sets of vector variables. It is an extension of multilinear regression
and has been used to analyse data in a number of different application areas. Within
the field of imaging, canonical correlation analysis has been previously used in image
segmentation of magnetic resonance spectroscopic images [16] and the identification
of noise in functional magnetic resonance images [21]. Canonical correlation analysis
has also been used to estimate the shapes of obscured anatomical sections of the brain
from visible structures in magnetic resonance images [17]. However, there it was used
as a predictive tool for a limited number of structures within the brain. Here we use it to
extract highly correlated factors (or modes) of variation in shape between a number of
different anatomical structures within the brain and an associated correlation coefficient
that quantifies the degree of correlation in this shape variation. This reveals statistical
dependencies between different shapes in the brain that ultimately we would like to
incorporate into a hierarchical model-fitting scheme. In the next section we describe the
mathematical formulation of canonical correlation analysis before presenting results of
the application of this technique in the analysis and prediction of brain structures in
section 3.

2 Canonical Correlation Analysis

The object of canonical correlation analysis is to extract and quantify correlations be-
tween two sets of vector variables, X = {z;},Y = {y,}. The technique determines
linear combinations of the components of the vector variables in X that are maximally
correlated with linear combinations of the components in Y, and the strength of each of
the correlations is described by a corresponding correlation coefficient that lies between
zero and one. The linear combinations, known as the canonical modes, give insight into
the relationships between the two sets of variables [18].

The canonical modes ay, by, and correlation coefficients pi for X and Y are calcu-

lated by solving the eigenvalue equations
CxxCxvyCyyCxyar = pr’an
CyyChy Cxx Cxybi = pi’by

ey

where C'x x, Cyy and C'xy are the covariance matrices describing variation within X,
Y, and between X and Y respectively [16]. The calculated modes ay, and by, are then the
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linear combinations of variable components in X and Y respectively that have a corre-
sponding correlation coefficient pi. The number of modes and correlation coefficients
determined by a canonical correlation analysis of X and Y will be equal to the minimum
of the number of dimensions in the vectors x; and y,. A single correlation coefficient p
representing the overall correlation between X and Y can be determined by averaging
the correlation coefficients over all calculated canonical modes.

Canonical correlation analysis has certain maximal properties similar to those of
principal components analysis (PCA). However, the two techniques differ fundamen-
tally in that while CCA focuses on relationships between two groups of variables, PCA
considers interrelationships within a single group of variables [18]. If, for example, we
were to pool the two sets of variables X = {x;} and Y = {y,} into a single set and
then perform a PCA, we would lose the distinction between the two sets of data as the
PCA does not ’know’ to which data set each variable originated from. The resulting
modes would then just model the variation of the composite data set without explicitly
describing the dependencies of the individual data sets on each another.

3 Canonical Correlation Analysis of Brain MR Data

3.1 Method

A set of MR images of 93 subjects from the Centre for Morphometric Analysis (CMA),
Boston, was used to create a training set of surfaces over which the canonical correlation
analysis was applied. The images were obtained at resolution Imm x 1.5mm x 1mm
and had been manually labelled in order to delineate structures within the brain by
experts at the CMA. Firstly, a reference subject was chosen and the surfaces of 17
different sub-cortical brain structures of this reference subject were calculated from
its labelled image. These surfaces are shown in figure 1 and represent the left and right
lateral ventricle, left and right caudate, left and right putamen, left and right accumbens,
left and right pallidum, left and right thalamus, left and right amygdala, left and right
hippocampus and the brain stem.

In order to model the variation in the surfaces of these structures across all subjects,
correspondences between each reference surface point and the corresponding surface
in each of the other subjects must be determined. These were calculated by registering
the labelled magnetic resonance images of each subject to the reference image using
a B-Spline FFD registration algorithm which represents each transformation as a sum
of a global affine component and a non-rigid component based on B-Splines [20]. The
optimal transformation is found by maximising the label consistency of the labelled
images which measures the degree of their alignment.

The registrations were then used to create a set of surface points for each of the struc-
tures over all 93 subjects. Firstly, for a given non-reference subject, the corresponding
reference to subject transformation was applied to the reference surfaces to give a set
of subject surface points. Then, for each structure, the calculated surface points of the
93 subjects were Procustes-aligned using scaling, rotations and translations [15, 12] to
give the final surface point coordinates for each structure and subject. The Procustes-
alignment ensures that any subsequent statistical modelling of the generated surface
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Fig. 1. This colour figure shows each of the 17 structures that we considered

points only describes variations in the shape of a structure over the training data rather
than variation due to differences in the position, orientation or size of a structure.

For each individual structure X, the vectors x; representing the surface point coor-
dinates for structure X of the ith subject 0 < ¢ < 93, were pooled to form a set of
vectors X = {x;}. Prior to performing the canonical correlation analysis of surface
point coordinates, a principal components analysis was performed on the surface point
coordinates for each individual structure across the training data to reduce the dimen-
sionality of the data. The dimension reduction minimizes the computational memory
burdens of the canonical correlation analysis and also eliminates colinearity in the data
which can cause instability in the calculation of CCA. Fifty-five modes of variation were
retained from the prinicipal components analysis of each structure ensuring that at least
95% of the variation in that structure across the training data could be represented. For
each structure X, the set X = {x;} was then transformed into its corresponding prin-
cipal components basis to give a new set of vectors X = {&,}. Canonical correlation
analysis was then performed for all pairs of structures X and Y using the correspond-
ing sets of vectors X = {&;} and Y = {§,}. In each case, fifty-five canonical modes
and correlations are determined describing the correlated behaviour between structure
X and structure Y. For a given pair of structures X and Y, these correlations were then
averaged to give a final correlation coefficient p between zero and one describing the
strength of the correlations between the two structures. We chose not to retain the actual
canonical modes as we were interested in quantifying correlations rather than analyzing
the correlated behaviour itself.

3.2 Results

Figure 2 shows the canonical correlation coefficients for each pair of structures as a
grey-level matrix image in which brighter areas represent higher correlations. We can
see that the correlation coefficients achieve the maximum value of one along the top-
left to bottom-right diagonal as this line represents the correlations between a structure
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Fig. 2. This figure shows the matrix image of the correlations p between each pair of structures. In
the image, bright areas represent strong correlations close to 1, while dark areas represent weaker
correlations close to 0.5.

Table 1. This table lists each structure and its most correlated structure

Structure Most Correlated p Structure Most Correlated p
Structure Structure

L. Lateral Ventricle R. Lateral Ventricle 0.7836 L. Pallidum L. Putamen 0.7714
R. Lateral Ventricle L. Lateral Ventricle 0.7836 R. Pallidum R. Putamen 0.7748
L. Caudate L. Lateral Ventricle 0.7604 L. Thalamus L. Lateral Ventricle 0.7659
R. Caudate R. Lateral Ventricle 0.7703 R. Thalamus R. Lateral Ventricle 0.7681
L. Putamen L. Pallidum 0.7714 L. Amygdala L. Hippocampus  0.7492
R. Putamen R. Pallidum 0.7748 R. Amygdala  R. Hippocampus  0.7509
L. Accumbens L. Caudate 0.7437 L. Hippocampus L. Lateral Ventricle 0.7509
R. Accumbens R. Putamen 0.7406 R. Hippocampus R. Amygdala 0.7509
Brain Stem R. Thalamus 0.7483

and itself which are always perfect. The matrix image is also symmetrical about this
diagonal as the calculation of the correlation coefficients between any two structures is
independent of which is taken to be structure X and which is taken to be structure Y.

If we consider those correlations lying off the leading diagonal we can see that
each pair of structures is correlated to different degrees. For example, the right pal-
lidum is better correlated to the right putamen (p = 0.7748) than to the left accumbens
(p = 0.7236). This means that, across the training data, the shape of the right pallidum
varies in a more correlated fashion with the shape of the right putamen than with the
shape of the left accumbens. In table 1 we show the best correlated structure (strongest
correlate) for each of the 17 structures and we can see that the strongest correlates of
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(a) (b)

Fig. 3. This figure shows each of the lateral ventricles in grey with the three most strongly cor-
related structures to each of them in in red, green and blue in order of decreasing correlation
strength. Figure (a) shows the left lateral ventricle (grey), right lateral ventricle (red), left thala-
mus (green) and left caudate (blue) and figure (b) shows the right lateral ventricle (grey),the left
lateral ventricle (red), the right caudate (green) and the right thalamus (blue).

each structure are proximal to it. For example, the left/right caudates are most strongly
correlated with the left/right lateral ventricles respectively and we can see in figure 1
that these structures are next to each other. Similarly, each of the lateral ventricles, puta-
men, accumbens, pallidum, thalamus and amygdala are best correlated with proximal
structures. Intuitively, this makes sense as one would expect variation in the shape of
a structure to be reflected in the shapes of proximal and neighbouring structures. An
example of this relationship between proximity and correlation strength is visualised in
figure 3, in which the three strongest correlates for the left/right lateral ventricles are
shown. In this figure the lateral ventricles are shown in grey and the correlated structures
are shown in red, green and blue in order of decreasing correlation strength.

There is also a degree of symmetry in the strongest correlates for structures that ap-
pear in both sides of the brain. For example, the left putamen is most strongly correlated
with the left pallidum, while conversely the right putamen is most strongly correlated
with the right pallidum. This symmetry is repeated for all the structures apart from the
hippocampus and accumbens. Such an example is shown in figure 4, in which the three
most correlated structures to the left and right pallidum are shown. Here we can see
that the strongest correlates of each pallidum are the neighbouring putamen and that
the pallidum are strongly correlated to each other. We find that equivalent structures on
each side of the brain are relatively highly correlated for all the structures apart from
the putamen and accumbens.

In order to investigate correlations that are not associated with symmetries in the
brain, we also performed a canonical correlation analysis in which equivalent struc-
tures on each side of the brain were concatenated into single structures. The resulting
surfaces were Procustes aligned and 56 principal components of the PCA were retained
before performing the canonical correlation analysis. Table 2 shows the strongest and
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4

(2) (b)

Fig. 4. This figure shows the left and right pallidum in grey with the three most strongly correlated
structures to each of them in red, green and blue in order of decreasing correlation strength. Figure
(a) shows the left pallidum (grey), left putamen (red), right pallidum (green) and left thalamus
(blue) and figure (b) shows the right pallidum (grey), right putamen (red), right thalamus (green)
and left pallidum (blue).

Table 2. This table lists each composite structure and its most/least correlated composite structure

Structure Most/Least Correlated Structure p

Lateral Ventricle Caudate/Accumbens 0.7857/0.7367
Caudate Lateral Ventricle/Brain Stem 0.7857/0.7352
Putamen Pallidum/Hippocampus 0.7829/0.7387
Accumbens Caudate/Brain Stem 0.7489/0.7346
Pallidum Putamen/Hippocampus 0.7829/0.7343
Thalamus Lateral Ventricle/Amygdala 0.7848/0.7427
Amygdala Hippocampus/Brain Stem 0.7613/0.7248
Hippocampus  Amygdala/Pallidum 0.7613/0.7343
Brain stem Thalamus/Amygdala 0.7563/0.7248

weakest correlates for each of the 9 composite structures. As would be expected, the
strongest correlations depicted in table 2 match those shown in table 1 for the individ-
ual structures. Overall, the strongest correlates to each of the 9 structures are proximal
to them, while the weakest correlates of structures are distal to them in all cases apart
from the lateral ventricles.

4 Discussion

The results of the canonical correlation analysis imply that there are differing degrees of
correlated variation between the shapes of different structures within the brain.
The CCA gives larger correlations for structures that are close to each other, which
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suggests that the shapes of structures both influence, and are influenced by, those struc-
tures that are proximal to them. Intuitively, this makes sense as one would expect
variation in the shape of a structure to be reflected in the shapes of proximal and neigh-
bouring structures. However, it should be noted that the correlations and associated
modes determined by canonical correlation analysis do not necessarily describe a large
amount of the variation between structures but instead describe the most correlated
behaviour in that variation.

The most interesting aspect of this work that we are currently pursuing is the incor-
poration of canonical correlation analysis into a hierarchical model-fitting algorithm.
Since CCA quantifies the strengths of the correlations between the shapes of different
structures, it can be combined with shape prediction techniques such as partial least
squares regression to guide a model fitting in a hierarchical fashion. Such a technique
would involve performing CCA on individual structures and groups of structures as we
have described in this paper.
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Abstract. The application of fluoroscopic images in operation is pervasive,
especially for orthopaedic surgery. Anatomy-based 3D/2D registration, rigid or
non-rigid, has been proven to improve the accuracy and precision of various
image-guided therapies. One of the key steps for a successful anatomy-based
registration is to establish 3D/2D correspondence between the 3D model and
the 2D images. This paper presents a novel 3D/2D correspondence building
method based on a non-rigid 2D point matching process, which iteratively uses
a symmetric injective nearest-neighbor mapping operator and 2D thin-plate
spline based deformation to find a fraction of best matched 2D point pairs be-
tween features detected from the X-ray images and those extracted from the 3D
model. The estimated point pairs are further ranked by their shape context
matching cost and those with high cost are eliminated. The remaining point
pairs are then used to set up a set of 3D point pairs such that we turn a 3D/2D
registration problem to a 3D/3D one, whose solutions are well studied. Rigid
and non-rigid registration algorithms incorporating the novel 3D/2D correspon-
dence building method are presented. Quantitative and qualitative evaluation
results are given, which demonstrate the validity of our method.

1 Introduction

The application of fluoroscopic images in operation is pervasive, especially for ortho-
paedic surgery. Disadvantages of fluoroscopy include two-dimensional (2D) projec-
tion image from single view, limited field of view, distorted image, and high radiation
to both the patient and the surgical team. Various papers [1, 2] have described meth-
ods of calibration and registration of fluoroscopic images using an optical localizer,
thus allowing to compute the position of the surgical tools relative to the patient anat-
omy with respect to acquired images during intervention. However, the surgeon still
needs to mentally fuse projection images taken from different view points. No real
three-dimensional (3D) information is available.

One way to address this problem is to do anatomy-based 3D/2D registration, rigid
or non-rigid, using 3D model extracted from either CT data or from statistical shape
models. The co-registered or reconstructed anatomical model can then provide de-
tailed 3D information for the considered bone structure, which has been proven to
improve the accuracy and precision of various image-guided therapies [3, 4].

J.P.W. Pluim, B. Likar, and F.A. Gerritsen (Eds.): WBIR 2006, LNCS 4057, pp. 75 - 83, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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However, anatomy-based 3D/2D registration is not a trivial task. One of the key
steps for a successful 3D/2D registration is to establish correspondence between the
3D model and the 2D images. This paper presents a novel 3D/2D correspondence
building method based on a non-rigid 2D point matching process, which iteratively
uses a symmetric injective nearest-neighbor mapping operator and 2D thin-plate
spline (TPS) based deformation to find a fraction of best matched 2D point pairs be-
tween features detected from the 2D images and those extracted from the 3D models.
The estimated point pairs are further ranked by their shape context matching cost and
those with high matching cost are eliminated. The remaining point pairs are then used
to set up a set of 3D point pairs such that we turn a 3D/2D registration problem to a
3D/3D one, whose solutions are well studied.

1.1 Our Contributions

The main contribution of this paper is the novel 3D/2D correspondence building
method based on the iterative non-rigid point matching process and on the shape con-
text distance based outlier elimination. This matching process belongs to a more gen-
eral non-rigid point matching framework [5, 6]. Thin-plate spline (TPS) is used in
their papers and the present paper as the parameterization of the deformation. The
main difference between theirs and ours are: (1) the design philosophy is different.
The algorithms presented in [5, 6] are targeted for more general applications, whereas
our method is specially designed for establishing 3D/2D correspondence. Our empha-
sis is to find a small number of point pairs with “good” matching quality; (2) their
solutions to 2D point correspondence are different from ours.

Compared with the previously published 3D/2D correspondence building methods,
our method differs in the way to extract the apparent contours and in the features
extracted from the input images. Unlike in [3, 7, 8, 9] where the apparent contours are
extracted in the primary space by an exhausting searching of all edges on the surface
modes, we use a method introduced by Hertzmann and Zorin [10], which is based on
dual space theory and provides a faster and smoother contour generator. More impor-
tantly, our 3D/2D correspondence building method is based directly on edge pixels,
which can be easily extracted by applying edge detectors to the input images. In con-
trast, all previously published methods require an explicit contour extraction, which
may be quite difficult when the shapes involved become complex or when the back-
grounds of the images become complex.

2 Image Feature Extraction

A standard implementation of Canny edge detector with hysteresis [11] is used to find
the edge pixels of the considered bone structure from the input images. To suppress
spurious edges, Gaussian convolution kernel with large width is used to smooth the
input images first. The detected edge pixels are further processed using the knowledge
about the fluoroscope. Detected edge pixel whose intensity is below a pre-selected
threshold or whose distance to the image center is bigger than a certain threshold is
eliminated.
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3 Apparent Contour Extraction

For fast extraction a smooth apparent contour from a given surface model, we use the
approach introduced by Hertzmann and Zorin [10]. This approach first constructs a
dual representation of the given surface mesh in a four-dimensional (4D) space based
on the position and tangent planes of every vertex. The focal point’s dual (a plane in
4D) intersects with the mesh triangles dual. Before hand, the approach normalizes the
dual vertices using the /_ norm so that the vertices end up on one of the unit hyper-

cube’s sides. This reduces the problem to intersecting the triangles on a hypercube’s
sides with the focal point’s dual plane, i.e., to intersect triangles in eight 3D unit cubes
(the eight hypercube sides) with a plane. By using Octree for each hypercube sides,
the extraction process can be greatly speeded up.

For a point (27,(j =1,2,---,M) on the extracted apparent contours using the pro-

jection parameters of input X-ray image s, we do a forward projection of this point
onto image s to get its 2D position A. Each 2D point in {A}} is then associated to a

3D point in {€27}. In the following section, we will describe an iterative matching

process for build 2D association between the points in {A;} and the detected edge

pixels in the X-ray image s.

4 Iterative Non-rigid 2D Matching Process

Following the general framework of point matching in [5], we also formularize the
2D matching as a two-stage process: correspondence and spatial mapping. TPS is
used here for parameterization of the spatial mapping. But unlike [5, 6], we solve the
correspondence problem differently. To make the description simple, we denote the

detected edge pixels in image s as I' ={I ,i =1,2,---,N} and the 2D projection of the
apparent contours as A° ={A],j=1,2,---,M}. Here we focus on 2D matching in one

image. The overall correspondence is established by combining matched point pairs
found in all input images.

Definition 1: Injective nearest-neighbor (IN). A point I; can only be matched to at

most one point of A and this point must be the closest one in A’ to I} .

Definition 2: Cross-matching. Assume there are two matched pairs (I;, A;) and
(I, A}). If the line segment from I to A; intersects at a point with the line seg-

m?

ment from I’ to A’ , we define this event as cross-matching.

Definition 3: Symmetric Injective nearest-neighbor (SIN). I and A’ is a sym-
metric injective nearest-neighbor if and only if A; is the closest point in A® to I}

and I} is the closest pointin I° to Aj.
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Definition 4: Symmetric injective nearest-neighbor mapping operator (SIN-MO).
We define the action of finding a number of SIN’s from two points set as symmetric
inject nearest-neighbor mapping operator.

Claim 1: If we apply SIN-MO on two point sets to find a number of matched point
pairs, all of them are one-to-one mapping.

Claim 2: If we apply SIN-MO on two point sets to find a number of matched point
pairs, there is no cross-matching (see Appendix for a proof).

The overall iterative non-rigid 2D matching process can be described as follows.

Input: Two point sets [° and A°, and a weight parameter A
Output: A list of 2D matched point pairs
Initialization: We first calculate the centroids of I° and A°, and then translate A°
so that its centroid is aligned with the centroid of I’
Iteration: It is a dual update process taking those points I’ as references.
Stage 1: Update the correspondence: Applying SIN-MO on I° and A° to find a
number of SIN’s. Let’s denote the set of SIN’s as {(I’,A’);a=1,2,---,K}
Stage 2: Update the positions of all points in A°: This is done in a two-step
procedure.

A. Compute a 2D TPS-based spatial mapping f using the estimated set of

SIN’s by minimizing the following cost function:

f

f =)’ ldxdy (D

EZD—TPS (f) = i” I f(A,, ) I

B. Update the positions of all points in A° based on the estimated TPS trans-
formation f

Repeat stage 1 and 2 a certain times (e.g. 30) or until convergence.

5 Using Shape Context Distance to Improve the Robustness

The 2D matching process described above has the advantages of robustness to certain
outliers and of automatic exclusion of cross matching, which is an important property
for preservation of topology in non-rigid registration. However, it is possible for the
proposed algorithm to create false matches. In this paper, we use the shape context
matching cost to further rank the point pairs estimated by the 2D matching process
and to eliminate those with high cost such that the false matching rate is reduced.

The shape context of a point is a measure of the distribution of other points relative
to it [12]. Consider two points, p; in one shape and g; in the other shape. Their shape
contexts are h(k) and hi(k), two K-bin normalized histograms at p; and g; for k =1, 2,

., K, respectively. Let C; denote the cost of matching these two points. As shape

context are distributions represented as histograms, the y° test statistic is used to
define C; in [12] as following equation:
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Those point pairs extracted by the 2D matching process are regarded as “best
matched” in terms of shortest distance in the context of iteratively deforming one
shape to match the other. By adding a step of shape context matching cost checking,
we also take the neighborhood distributions of those point pairs into consideration.

6 3D Matched Point Pair Building

Assume that we have found a set of 2D matched point pairs {(I,,A;);b =1,2,---,L},
we are trying to build the corresponding 3D point pairs in this step as follows. For a
2D point I, , we can find a projection ray r, emitting from the focal point of image s

through point I; . Additionally, for its matched point A;, we always know its associ-
ated 3D point J; on the apparent contour of the model whose projection onto the
image s is A;. By computing a point v, onthe ray #, which has the shortest distance
to (27, we can build a 3D point pair (v;,(2;). Combining all these 3D point pairs, we
can establish 3D/2D correspondence between the input model and images.

7 Anatomy-Based Rigid or Non-rigid Registrations

As soon as a set of matched 3D point pairs are established, we have turned a 3D/2D
registration problem to a 3D/3D one whose solutions are well studied. A complete
description of these solutions is beyond the scope of this paper. Here we would like to
present two algorithms to illustrate how to incorporate the proposed correspondence
building method into rigid or non-rigid 3D/2D registrations.

7.1 Rigid 3D/2D Registration

The corresponding rigid 3D/3D registration problem is a well-known problem and
several efforts have been made to solve it. One of the most popular methods is the
iterative closest point (ICP) algorithm [13, 14]. The ICP is based on the search of
pairs of closest points, and the computation of a paired-point matching transforma-
tion. The result transformation is then applied to one set of points, and the procedure
is iterated until convergence. The local converging behavior of ICP algorithm requires
a proper initialization, which can be achieved by a paired-point matching using ana-
tomical landmarks of the considered bone structures.

Incorporating the present 3D/2D correspondence building method, we turn a
3D/2D registration problem to a 3D/3D one. Similar to the ICP algorithm, in each
step we calculate a paired-point matching transformation based on the estimated point
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pairs and then apply the transformation to one side of the registration. This procedure
is then iterated until convergence. We call this procedure the Iterative Best Matched
Projection Point IBMPP) algorithm. The difference between the IBMPP algorithm
and the ICP algorithm is that in each step point sets from both sides of the registration
are changeable for the IBMPP algorithm while only one point set is changeable for
the ICP algorithm.

7.2 Non-rigid 3D/2D Registration

Recently, statistical shape models based non-rigid 3D/2D registration has drawn a lot
of attentions [7, 8, 9, 15]. Basically there are two ways to optimize the solutions: (1)
do it directly on the images [15]; and (2) convert it to a non-rigid 3D/3D registration
problem [7, 8, 9]. Suffered from the noisy in the input images, the former solutions
require a closer initialization. In this paper, we are interested in methods in the latter
category. A common disadvantage of all published solutions in this category is that
they all require an explicit contour extraction as a prerequisite step, which can be
quite difficult when the structure involved is complex or when the backgrounds of the
X-ray images become complex.

By combining the present 3D/2D correspondence building method with our re-
cently introduced 3D/3D surface reconstruction algorithm [16], a robust and accurate
anatomy-based 3D/2D non-rigid registration algorithm has been developed. In the
following section, the results of applying this algorithm to register statistical shape
models of proximal femur to C-arm images of human cadaveric proximal femurs will
be reported.

8 Experiments

We have performed experiments to evaluate the proposed method. For each case, two
nearly orthogonal images are acquired. The acquired images are calibrated and regis-
tered using methods described in [2]. Results of both rigid and non-rigid 3D/2D regis-
tration are given.

Rigid 3D/2D registration: A plastic vertebra was used for this study. Fiducial
markers were implanted for computing the ground truth of the registration trans-
formation. Part of the registration procedure steps are shown in the top row of
Figure 1 and the target registration error (TRE) calculated on those fiducial mark-
ers is 0.9 mm.

Non-rigid 3D/2D registration: Eleven cadaveric proximal femurs were used for this
study. Part of the non-rigid 3D/2D registration steps of one example are given in the
bottom row of Figure 1. The non-rigid registration accuracies were evaluated by digi-
tizing 100 — 200 points from each surface of the cadaveric specimen and then comput-
ing the distance from those digitized points to the associated surface estimated from
the images. The in-vitro experiments show a mean error of 1.2 mm (STD=0.2 mm),
which demonstrates the robustness and accuracy of the proposed method.
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Fig. 1. Results of anatomy-based rigid (top row) and non-rigid (bottom row) 3D/2D registration
incorporating the proposed 3D/2D correspondence building method. First column, one of the
acquired images; Second column: the initial state of the 3D models (green curves: the detected
edge pixels; white dots: the extracted apparent contours). Third column: after establishing
3D/2D correspondence. 3D Matched point pairs are linked with yellow line segments; Forth
column: after 3D paired point matching. We apply the estimated transformation to the model
and then re-calculate apparent contours; Fifth column: after re-establish 3D/2D correspondence;
Sixth column: the final rigid (top) and non-rigid (bottom) registration results after a series of
computations.

9 Conclusions

We have presented a novel 3D/2D correspondence building method and successfully
applied it to both anatomy-based rigid and non-rigid 3D/2D registrations. The qualita-
tive and quantitative results demonstrate the validity of our proposed method. In the
future, we will do more studies to evaluate its robustness.
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Appendix: Proof of Claim 2

s

Proof. Using proof by contradiction, let’s assume that (I;, A}) and (I, A;) are two

SIN’s and they also form a cross-matching and intersect at point O (Fig. 2).
In AOI}A; and AOA'T;, , applying the principle of triangle inequality, we have:
(LA IHILA ) > (LA 1+ T3AY ) 3)

m

m?

Additionally, as (I;, A}) and (I, A}) are two SIN’s, we have | AT ISITA] T,
and | I} A} IIT) A7l Combining them together, we have:

(LA A DS A LA+ AL )

Eq. (3) and (4) are contradictory to each other, i.e., (I, A;) and (I}, A} ) can not

m?

be two SIN’s and also form a cross-matching. This proves the claim 2

Fig. 2. Two SIN’s that also form a cross-matching
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Abstract. Digital breast tomosynthesis combines the advantages of digital
mammography and 3D breast imaging. To facilitate the comparison of new
tomosynthesis images with previous mammographic exams of the same
woman, there is a need for a method to register a mammogram with tomo-
synthetic images of the same breast; this is the focus of our paper. We have
chosen to approach this multimodality registration problem by registering a
mammogram with individual tomosynthesis source projection images. In this
paper, we analyzed the results of registering an MLO mammogram to nine
tomosynthesis source projection images of the same breast. On average, we
were able to compensate 90 percent of the per-pixel intensity differences that
existed between the two images before registration.

1 Background

Early breast cancer detection requires identification of subtle pathological changes
over time, and is often performed by comparing images from previous years.
Projection mammography is considered the preferred screening modality for early
breast cancer detection. However, diagnostic breast imaging is a multimodality task.
Breast ultrasound is used for distinguishing cysts from solid lesions. Breast magnetic
resonance imaging (MRI) offers functional information.

Recent research efforts have focused on developing 3D x-ray breast imaging
modalities. Several modalities have been developed, including stereomammography,
breast tomosynthesis, and breast computed tomography (CT) [1-3]. These modalities
combine the advantages of mammography and 3D image visualization. The recent
development of contrast-enhanced breast tomosynthesis may additionally provide
functional information [4]. Of the proposed 3D x-ray modalities, breast tomosynthesis is
the most likely to replace mammography as a screening procedure, chiefly because the
acquisition geometry is nearly identical to mammography. In current implementations
of tomosynthesis, between nine and 48 source projection images are acquired of the
compressed breast as the position of the x-ray focus is altered. The total dose used is
comparable to the dose needed for a mammographic exam. The projection images are
used in a limited-angle CT reconstruction to form a tomographic image set. Several
reconstruction algorithms have been proposed, ranging from filtered backprojection to
sophisticated iterative reconstruction techniques [1,2]. Tomosynthesis produces
tomographic images of the breast in which a given anatomical plane is in focus while
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anatomical structures above and below the plane are blurred to such an extent as to be
essentially removed from the image.

With the clinical introduction of tomosynthesis, it will be necessary for radiologists
to compare tomosynthesis images with previous mammograms of the same women to
detect subtle temporal changes in the breast. It will be also necessary to compare
tomosynthesis data sets of the same patient taken at different times. The former
comparison task, while of a limited lifespan, requires 2D-3D registration. The latter
comparison could be approached by direct registration of the reconstructed data sets.
Such a registration should take into account possible differences in reconstruction
algorithms used for the two 3D data sets. Alternatively, this comparison can be
approached as a 2D-3D problem, in which one registers the tomosynthesis source
projection images from two exams. We can look at research in computer-aided
diagnosis to support the choice of 2D-3D methods being used to process
tomosynthesis images. Chan et al. [5] are using 3D processing methods for the
detection of lesions in tomosynthesis data sets, while Nishikawa et al. [6] use separate
processing of 2D source images.

Our current research focus is on the registration of a mammogram and individual
tomosynthesis images of the same breast. In this paper we present preliminary results
obtained by registering an MLO mammogram and nine individual tomosynthesis
source projection images obtained from one patient.

2 Methods and Materials

The problem of registering mammograms and tomosynthesis images can be approached
in two ways. First, one could try to address directly the registration of a mammogram
and a set of reconstructed tomographic images. This is a true multimodality registration
problem. Consider the problem of finding the position in a tomographic data set which
corresponds to a lesion identified in a mammogram. In this registration schema, one
would need to analyze all reconstructed tomographic planes, since each plane contains
only a subset of the tissue structures which are visible in the mammogram.

Alternatively, one could initially perform the registration of a mammogram and one
or more of the projection images; this is a 2D registration problem. Each projection
image should contain basically the same tissue structures as the mammogram, with
some variation in positioning, compression, and dose. This registration schema,
applied in multiple projection images, would allow the lesion to be located in 3D from
knowledge of the acquisition geometry.

In this paper, we focus on the registration of the medio-lateral oblique (MLO)
mammogram and the tomosynthesis source projection images of the same breast. In a
companion paper, we analyzed the registration of the central source projection and the
MLO mammogram [7]. The central projection is acquired in essentially the same
MLO breast position, but with a reduced dose. The non-central projections are
acquired with the same breast positioning and compression, but with the x-ray focus
in different locations.

At the Hospital of the University of Pennsylvania, tomosynthesis projection images
are acquired on a Senographe 2000D (General Electric, Milwaukee, WI) which has
been modified to allow independent motion of the x-ray tube head. The x-ray tube can
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be reproducibly positioned at nine locations, each separated by 6.25 degrees. In the
current system the collimator variably occludes the detector (see Fig. I). Each breast
is compressed in an MLO position. The projections are acquired at a total dose equal
to the dose of two-view mammography. Tomographic images are reconstructed, in
planes parallel to detector, using a filtered backprojection algorithm.

Jaxnixl

MLO mammogram

K=5: Central K=8 K=9
Projection

Fig. 1. The clinical images used for the registration of an MLO mammogram (upper left) and
the tomosynthesis source projection images (K=1,...,9) of the same breast. The images were
acquired the same day by the same technologist, with nearly the same breast positioning. The
mammogram and the central projection (K=5) were acquired with the same geometry, but with
different dose. The non-central projections (K#5) were acquired with different x-ray focus
locations.

We use a non-rigid method to register the MLO mammogram and the tomosynthesis
projection images of the same patient. The registration method combines intensity- and
contour-based constraints to match regions of interest (ROIs) in the source and target
images [8]. The registration task is formulated as the inverse problem of finding a
geometric deformation that minimizes an energy function with free boundary conditions.
The energy function includes three constraints designed (i) to prevent ill-posed solutions
by regularization, (ii) to compensate for linear variations in image intensities, and (iii) to
correct the initial mapping of the ROI in target image onto the corresponding ROI in
source image. Before the registration, the ROIs in the source and target images were
identified as the breast regions without the pectoral muscle. The pectoral muscle area was
identified as the region above the line defined by two manually selected points on the
muscle contour. In addition, the region occluded by the collimator were manually
identified in each tomosynthesis projection image, and replaced by pixels of zero
intensity; the same region in the mammogram was also replaced by pixels of zero
intensity.



2D-to-3D X-Ray Breast Image Registration 87

In this study, we registered the two images by deforming the mammogram to
match the individual tomosynthesis projections of the same breast. The non-rigid
registration method was performed in two steps. First, an initial registration was
performed, based on the contour matching only. This initial step is followed by the
corrections of the differences in the pixel intensity distribution between the target and
source images. Detailed description of the registration method is given in our previous
publications [8]. In an evaluation using synthetic images generated with a software
breast model [9], an average displacement error of 1.6 mm was obtained for
mammograms with compression differences of up to 3 cm. [10]. This is acceptable, as
we have observed that the compression difference between mammography and
tomosynthesis is approximately 1 cm.

To date, 51 clinical breast tomosynthesis exams have been performed as a part of
an IRB approved clinical study in our institution. After providing informed consent,
each patient in the study also received digital or film-screen mammography on the
same day. As a result, there are only a few, specific variations that can exist between
the images (see Fig. 1). This is of importance for initial testing of the registration
methods because no temporal changes in the breast tissue will have occurred.

We evaluated the registration results by calculating the percentage of corrected
differences, PCQD, defined as:

PCOD = [Sy( A7) - Ty y)P ] 7 Sy A )E x 100% (1

where (4%;)™ and (4%;)"*" represent the quadratic differences between the
intensities of the pixels at position (i,j), before and after registration, respectively.
(AZ,-J-)P = [M(i,j)P-TK(i,j)]Z, (K=1,...,9), where M(i,j)P represents the intensity of the
pixel at position (i,j) in the mammogram, before (P=PRE) or after (P=POST)
registration, and T(i,j) represents the intensity of the pixel at position (i,j) in the Kth
tomosynthesis projection. The higher PCQD values indicate the better registration
performance. We also compared the root-mean-square (RMS) difference between the
mammogram and the projection image, computed before and after registration:

. 2 12
RMS Image Difference = [2(A";;) Friz (P=PRE, POST). 2)

3 Results

Fig. 1 shows the mammogram and the nine tomosynthesis source projection images
acquired from the analyzed case. Fig. 2 focuses on the registration of the
mammogram (upper left) to one of the tomosynthesis source projection images (upper
right). The selected projection image is labeled K=2 in Fig. 1. The registration result
(middle image) is shown in the form of a mammographic image non-rigidly deformed
to match the tomosynthesis source projection. We have evaluated the registration
performance using the difference images shown in the lower row of Fig. 2. The
difference images were computed before (lower right) and after (lower left)
registration.
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Fig. 2. Illustration of the registration of a mammogram and tomosynthesis source projection
image of the same breast. The upper row shows the registration image pair: a mammogram
(left) to be registered onto a tomosynthesis projection image (right); projection K=2 (Fig. 1)
was used. The registration result is shown in the middle row. The lower row shows the
difference between the mammogram and the source projection, computed before (lef) and after
(right) registration.
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Fig. 3. (a) RMS differences between the mammograms and individual tomosynthesis source
projections of the same patient, computed before and after registration. The RMS image
differences for each of the nine tomosynthesis projections are indicated by numbers 1-9; solid
and bold numbers correspond to the differences computed after the initial and complete
registration, respectively. The corresponding linear regressions are plotted by the dashed and
bold lines, respectively. (b) RMS image differences as a function of x-ray focus location
corresponding to different source projections.
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We have registered the mammogram to all nine tomosynthesis source images.
Using the difference images we computed the PCQD measure of the registration
performance, defined in Eq. (1), after the initial registration and after the complete
registration. The average values of PCQD =+ one standard deviation, were equal to
58+4% and 90+4%, after the initial and complete registrations, respectively.
Fig. 3(a) shows a plot of the RMS differences between the mammograms and
central tomosynthesis projections, computed before and after non-rigid registration.
The slope values of the linear regressions computed after the initial and the
complete registration are equal to 0.13 and 0.10, respectively. Fig. 3(b) shows the
RMS images differences values as function of the tomosynthesis source projection
image label K.

4 Discussion

We have chosen to approach the registration of a mammogram and a tomosynthesis
data set of the same breast, starting from the simpler problem of registering a
mammogram and the individual tomosynthesis source projection images. The
mammograms and tomosynthesis images were acquired on the same day by the same
technologist, thus having minimal variations.

The computed average PCQD values are consistent with those computed in our
study of non-rigid registration of mammograms and central tomosynthesis projections
from 15 clinical breast image pairs [3]; in that study we computed the average PCQD
values before and after registration of 52+20% and 94+3%, respectively.

Fig. 3 suggests that the image differences computed after the registration show
relatively low dependence on the differences computed before the registration; the
slope of the linear regression corresponding to the complete registration, shown in
Fig. 3(a), is equal to 0.10. This result is also comparable to that obtained in our
analysis of the registration of mammograms and central tomosynthesis projections
[3]; the slope of the linear regression in that study was equal to 0.20.

Fig. 3(b) shows a variation in the RMS image differences computed before
registration as a function of the tomosynthesis source projections (i.e. different x-ray
focus locations). Ideally, assuming no changes in breast positioning, the minimum
RMS image difference between the mammogram and the tomosynthesis source
projection image should correspond to the central source projection (labeled K=5).
Tomosynthesis projection images acquired with a larger angle to the central
projection should result in an increased image difference. In Fig. 3(b), the minimum
image difference is observed for the source projection K=6. The observed variation is
not significant. Small changes in breast positioning between the mammography and
tomosynthesis exam could cause this observation. Another possibility is that the
calculation of the RMS image difference is sensitive to the variable occlusion of the
detector (see Fig. I). This latter issue is resolved in a new Senographe DS digital
mammography machine (General Electric, Milwaukee, WI), optimized for the use in
tomosynthesis, which is being installed in our department.
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5 Conclusions

We performed a non-rigid registration of a clinical MLO mammogram with nine
tomosynthesis source projection images of the same woman. Individual tomosynthesis
source projection images were acquired at different positions of the x-ray tube, each
separated by 6.25 degrees. The mammograms and tomosynthesis images were acquired
on the same day by the same technologist, thus having minimal variations. We evaluated
the registration performance by computing the percent corrected quadratic differences
between the mammogram and the central tomosynthesis projection. On average we were
able to compensate 90 percent of the per-pixel intensity differences that existed between
the two images before the registration. In this paper, we evaluated the registration
performance based on the pixel intensity differences computed from clinical images of a
single patient. We are currently expanding this work to include more patients and to
evaluate the registration results based on the average displacements of manually or
automatically extracted fiducial points.
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Abstract. In this paper we are concerned with elastic medical image
registration. By spatially varying parameters, a displacement field can
be reached which is adapted to local material properties. In addition,
it enables the introduction of discontinuities within the displacement
field inbetween different anatomical structures, like bones and soft tissue.
The capability of this approach is demonstrated by various academic
examples.

1 Introduction

Nonrigid image registration is a challenging field of growing importance in med-
ical imaging. The task is to find a vector field of displacements such that each
point in a template image can be mapped onto a corresponding point in a ref-
erence image in a ‘meaningful’ manner.

By the notion ‘meaningful’ often a type of constraint is meant which both
preserves the topology and prescribes identical elastic properties throughout the
image domain. However, there exist several cases where changes in topology are
essential and/or where anatomical structures behave different from each other.
For instance, structures which are connected in one image may be disconnected
in the other image, like the brain-skull interface subject to a brain shift. Further-
more, structures may move along each other and thereby causing discontinuities,
like the liver or a joint and their surrounding tissues. In addition, soft tissue is of
different elasticity compared to bone structures and therefore behaves different.
Also, preservation of shape or volume may be a reasonable property.

Typically, the wanted displacement is computed subject to a smoothness con-
straint. For example, the constraint is realized by a regularization based on the
linear elastic potential of the displacement. In general, the constraint is applied
globally with one global regularization parameter and — for the elastic regular-
izer — with elastic properties independent from the image position. Usually, such
a method provides satisfactory results due to the underlying physical model.
Nonetheless it fails in cases described above, since a global regularization does
not allow for any local changes in topology or material properties. Therefore, in
this note a ‘meaningful’ transformation enables changes in topology, supports
local material properties, possibly approximates a shape or volume preservation
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and requires, to this end, a locally varying regularization. As a consequence, fur-
ther a priori knowledge has to be added. This can be achieved by a segmentation
of the template image only.

In the literature one can find several attempts dealing with nonrigid image
registration in conjunction with spatially varying regularization or material pa-
rameters, for example the radial basis functions [1], the Bezier tensor product [2],
the B-spline with subsequent filtering [3], the damped springs [4], the finite ele-
ments [5, 6, 7] or the finite differences [8] based approaches, respectively. However,
these methods either do not reflect the physical behavior of the underlying ma-
terial, or the registration yields a smooth transformation field, allowing for no
discontinuities at all.

In [9,10] we briefly introduced a new approach which overcomes the above
mentioned shortcomings. In this note we extend the new idea and describe the
method in greater detail. The following section is concerned with its mathemat-
ical formulation whereas Section 3 addresses the numerical treatment. Finally,
we demonstrate its advantages by application to academic examples.

2 Variational Approach

Let R,T : {2 — G denote the reference and the template image, respectively.
Here, G denotes a set of gray values and 2 C R¢ the d-dimensional image
region. In addition, let a meaningful segmentation of 7" be given. That is, a
decomposition of {2 into disjoint regions 2; is assumed, such that 2 = U/*,$2;.
For convenience, let {2y denote the background of image T'.

The registration aims at finding a displacement field u : 2 — R such that
T. = T(id + u) is similar to R, where id denotes the identity mapping. In
mathematical terms, the similarity is described by a functional D[u;T, R]. D
can be chosen as any popular distance (or similarity) measure provided its
Gateaux derivative exists. However, this note is restricted to the common sum
of squared differences, D[u; T, R] = [,[R Tu(x)]?dx =: [, LPdx, which
assumes monomodal images.

A registration based on a similarity measure only, may yield a deformed tem-
plate image which perfectly matches the reference image as long as all gray values
are present in both images. However, the problem is ill-posed and the underly-
ing deformation does in general not make sense in a physical context. Therefore,
an additional smoothness constraint (or regularizer) is considered which can be
chosen to model the application specific physical properties. Also, it may be
interpreted as a penalizer. In this note we investigate a regularizer based on
the popular linear elastic potential which is in addition equipped with spatially
varying parameters (the so-called variable elastic regularizer),

d
Slusa, A pu] = / Oéu(u: Z (O, u; + Og,uj)® + >\2u (V- u)z)dm =: / LSd,
17} I7)

i,j=1

where (i, Ay and p,, are defined in analogy with T3,. For other regularizers
including diffusive-, fluidal- or curvature-based approaches we refer to, e.g., [11].
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In contrast to a conventional approach, where a, A and p are global con-
stants, all the three parameters are assumed to be spatially dependent. Here,
the positive weighting function « : £2 — R describes the local influence of the
regularizer. By knowing the segmentation of the template image we are now in a
position to reduce the regularization of the displacement field locally and, there-
fore, to allow for local changes in the topology. To this end, a < 1 is set in the
background region 2y, cf. [10]. The Lamé parameters A, u : 2 — R are used to
reflect the material properties. From a qualitative point of view, u is inversely
proportional to the elastic modulus and A/u is proportional to the incompress-
ibility of the material. For a detailed interpretation and a comparison of values
for specific anatomical structures used in the literature we refer to [7]. Again, by
exploiting the segmentation of T, different elastic properties can be assigned to
each subdomain 2;. Thereby diverse elastic behavior of different materials, like
bones and muscles, can be simulated.

Note, that a,,, Ay and p,, depend on the displacement u. This dependency is
indispensable due to the fact that nonlinear registration approaches mostly em-
ploy an iterative scheme and therefore the material properties at a fixed position
do change in the course of the registration. As a consequence, the parameters at
an intermediate stage can be deduced from u applied to the initial setting which
makes a segmentation of the reference image redundant.

By combining the similarity measure and the regularizing term, the problem
is to find a displacement field v which minimizes the joint functional

J[u] = Dlu] + Slu] = /

LDd:ch/ Lodz. (1)
2 2

The computation of the Gateaux derivative of (1) yields a necessary condition
for u* being a minimizer of (1),

VoLl? + Vo LS — Vg, LS = 0.

Here, V,, refers to the gradient with respect to (u1,...,uq) whereas Vv, de-
notes the gradient with respect to the Jacobian of w. The outcome is a system
of nonlinear partial differential equations equipped with associated boundary
conditions,

Au+g(u) + f(u) =0 on 2,

) 2
Bu,:() ondf2,i=1,...,d, @)
on

where f(u) := —(R—T,)VT, results from differentiating the similarity measure
and is therefore independent from the choice of a regularizer. For the variable
elastic regularizer a straightforward calculation yields

Au = —V - [y pin(Vu + V)] — V[ag AV - 1] and

d
i S (Ot + Ory11)?V [vugia] + ;(v R WY

ij=1

g(u):
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Here, we collected terms with a linear dependency on u or on its derivatives in
Awu and those with a nonlinear dependency in g(u). This allocation will become
handy in the numerical treatment. Note that Au = g(u) + f(u) corresponds
to the Navier-Lamé equations. The boundary conditions in (2) are of Neumann
type but clearly they may be chosen problem dependent.

3 Numerical Treatment

By introducing an artificial time variable, (2) can be linearized as
(id + 7 AU = u® — 7 f(w®)) — 7g(u®), (4)

where u*+1) = wu(x, tyy1) = u(x, tx +7) and u(®) = 0. Due to the allocation
into A and g, the differential operator id + 7.4 is linear.

The system of partial differential equations (4) can be discretized on a stag-
gered grid using second order finite differences yielding a d x d block matrix. It
turned out to be reasonable to discretize (3) without evaluating the divergence
operator first. Otherwise the matrix will be non-symmetric for varying parame-
ters. As a consequence, the discretized form of (3) requires the evaluation of a;, A
and g on interlaced grid positions. Whereas A and p could be interpolated either
on a full- or on a half-integer grid, the definition of & on a half-integer grid is cru-
cial. For example consider two adjacent anatomical structures. A displacement
independently chosen for both structures requires a reduced regularity inbetween
(i.e. a thin gap of background region). By defining « on the full-integer grid, a
separate row (column) would be needed to incorporate the reduced regularity.
When coarsening the scale the same row (column) would still be needed be-
coming more and more dominating compared to the size of the adjacent image
structures. In contrast, defining o on a half-integer grid does not increase the
dominance of the gap and is therefore recommended for a multiscale approach.
However, a minimum gap size of inter-voxel width is required on the finest image
level.

For stability reasons, derivatives of g are approximated by the minmod slope
technique [12].

The arising system of equations is of size dN (NN being the total number of
voxels in £2). This system has to be solved at every iteration step. The system ma-
trix resembles the Navier-Lamé differential operator and includes the additional
information given by the segmentation and local parameters. The righthand-side
results from both the similarity measure and further derivative terms due to the
dependency of the parameters on u.

Finally, to evaluate the deformed template image T, (x) and to build up the
linear system of equations for the following iteration step, interpolation for ax,,
Ay and pi,, is required.

From a theoretical point of view the variational approach and its numerical
treatment is suitable for any dimension. However, in this note we only report
on results for the more instructive 1D and 2D cases. For a practical treatment,
multiresolution and multigrid techniques are advisable.
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4 Results

The proposed method has been applied to various academic images. Note that
in 1D the variable elastic regularizer simplifies to a variable diffusive regularizer,
cf. [10].

1D gap example. In order to outline some fundamental properties of the new
approach we start with a 1D image consisting of five objects (cf. Fig. 1, top
left, for the template image). Each object (given by an interval with non-zero
gray values) belongs to a single region {2;, [ = 1,...,5, which is encoded in the
segmented template image by assigning an integer value to each region (center
left). For the outer objects there is no change in position during transition from
the template image to the reference image (top of second column). The other
ones are designed, such that they do change their positions in such a way that
gaps between them show up or disappear. From the segmented template image
we deduce the values of the weighting function « (bottom left). By setting «
small in background regions we expect a displacement function which is constant
within each object and inhibits high gradients inbetween.

AR
ﬂ—ﬂwwv
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Fig. 1. The template image together with its segmentation and the deduced values for
a are shown in the first column (from top to bottom). The second column displays
the reference image (top), below the resulting displacement function (center) as well
as the transformed template image (bottom), T%. In the upper right corner a modified
reference image with added 10% white noise is shown. It serves for the results of
the third and the fourth column where a varying a and a constant a are chosen,
respectively.

As it is apparent from the second column, the variable regularizer applied
with a(x) = 10 and «(z) = 0.01 inside and outside the objects, respectively,
nicely fulfills our expectations. The displacement function (center) indicates a
constant displacement within the objects with abrupt changes inbetween. Below
the transformed template image is depicted. For better comparison we added
the (undeformed) template image (dotted line) as well as the reference image
(light gray; not visible here due to the coincidence with T%,). Note that a similar
result may be reachable when applying a constant but very small «. However,
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this problem is becoming more and more ill-posed the smaller « is and requires,
therefore, a smaller step size 7.

To test the proposed method for a more realistic setting, we modified the
reference image by adding white noise with a standard deviation of 10% of the
previous gray value scale (Fig. 1, top right). The template image and « remain
unchanged. The ideal displacement field for this setting remains the same as
with the unchanged reference image.

Now, the regularizer has been applied with both a varying (third column) and
a constant (fourth column) weighting function. Whereas the constant choice of
a = 0.03 leads to a dissatisfying result due to the presence of noise in the refer-
ence image, a variable weighting (same as for the second column) both supports
a noise-independent smooth displacement within the objects and enables for high
gradients in the gap regions.

2D rotation example. In the second example we consider the shape-
preserving feasibility of the variable elastic regularizer. To this end, a template
image with a square is given. A rotation by 30° yields the reference image,
cf. Fig. 2. Whereas in the first experiment all parameters are chosen constant, in
the second experiment g is multiplied by 1000 in the square region. Although,
after the same number of iterations, both transformed template images almost
match the reference image, the varying parameter case (cf. Fig. 2, right) is clearly
preferred.

o ]

Fig. 2. Template (left) and reference image (center left) are displayed together with
visualized displacement fields for a constant u (center right) and a spatially varying p
(right)

2D phantom image. The last example considers a 2D phantom image (Fig. 3,
top left) consisting of three objects: a rectangular object representing, for in-
stance, bone structure, a square object modelling some soft tissue and in its
inside a circle object taking the role of, for instance, a tumor. For the transi-
tion from the template to the reference image (Fig. 3, top right) we model a
shrinking of the tissue object without affecting the bone object, which is usually
a problem in registration approaches. The second problem regards the behavior
of the circle object. Due to its invisibility in the reference image a conventional
registration approach will tend to shrink its size in order to relate it as much as
possible to a circle of zero size.
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Fig. 3. Below the template and reference image (first row), the results from four dif-
ferent settings are depicted columnwise with respect to 7% (second row), the overlayed
displacement field (third row; data are thinned out for better recognition) and the
volume preservation indicator |1 + Vu| (last row), cf. text for further details

The variable elastic regularizer has been employed with four different param-
eter settings. For the first setting, all parameters are constant (o = 0.1, A = 0.1,

= 4), cf. the first column of Fig. 3. For the remaining settings « is reduced
locally for all background regions (o = 0.015). In addition, for the circle object i
(cf. third column) and A (cf. fourth column) are multiplied by 1000, respectively.

The resulting deformation fields have been compared with respect to the
deformed template image (second row in Fig. 3) and for a zoomed region around
the square object with respect to the displacement field (third row) and the
quantity |1+ Vu| (last row). Here, a volume preserved region (corresponding to
|1 4+ Vu| = 1) is depicted by medium gray, whereas a contracting (expanding)
region appears in light gray (dark gray).

Recalling the first problem, the shrinking of the tissue object without affect-
ing the bone object works properly whenever the weighting of the regularizer
is small inbetween (second to fourth column). For the second problem several
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observations can be made. With no further material knowledge the tumor ob-
ject is shrinked (reduction in volume is 30%), indicated by a light gray of the
circle object in the bottom row. With a large p or A either a shape (and vol-
ume) preservation (third column) or an approximated volume preservation only
(fourth column) can be seen. For both cases the change in volume is less than
0.3%.

5 Conclusion and Discussion

We have proposed an elastic potential based registration approach with displace-
ment dependent parameters. It has been shown that this approach enables one to
incorporate pre-knowledge, for instance the knowledge of anatomical structure or
material properties. Whereas a proper choice of the local influence of the regular-
izer may lead to a discontinuous displacement field in order to model topological
changes, different choices for the material parameters allow to mimic different
elastic properties. Clearly, exact values for the parameters are not known in
general and, usually, are guessed for in vivo situations [7].

Compared to our previous results, now, the segmentation of the template
image only is sufficient. This is an important issue for time-critical tasks, like
brain-shift, since an (often time-consuming) segmentation is required for the
pre-operatively generated image only.

However, as a consequence from skipping the intra-operative segmentation,
adjacent anatomical structures require, in order to diverge, a minimum gap of
inter-voxel width inbetween. We are currently working on omitting this draw-
back.
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Abstract. This article tackles the registration of 2-D biological images
(histological sections, autoradiographs, cryosections, etc.). The large va-
riety of registration applications — 3D volume reconstruction, cross-dye
histology gene mapping, etc. — induce an equally diverse set of require-
ments in terms of accuracy and robustness. In turn, these directly trans-
late into regularization constraints on the deformation model, which
should ideally be specifiable in a user-friendly fashion.

We propose an adaptive regularization approach where the rigidity
constraints are informed by the registration application at hand and
whose support is controlled by the geometry of the images to be regis-
tered.

We investigate the behavior of this technique and discuss its sensitiv-
ity to the rigidity parameter.

1 Introduction

A key component of medical image analysis, image registration essentially con-
sists of bringing two images, acquired from the same or different modalities, into
spatial alignment. This process is motivated by the assumption that more infor-
mation can be extracted from an adequate merging of these images than from
analyzing them independently. Its use covers a wide variety of applications, from
building anatomical atlases, to longitudinal studies of tumor growth or other dis-
ease processes, through surgical planning and guidance (see [1] for a thorough
overview).

More formally, given two input images, registering the source (i.e., movable)
image to the target (i.e., fixed) image entails finding the transformation that
maximizes the similarity between the transformed source image and the target
one.

Motivation. In addition to the selected image features used to measure the
adequacy of a match between two images (e.g. comparison of intensities for
intensity based registration approaches, anatomically meaningful invariants such
as structure boundaries for geometric techniques, etc.), another pivotal axis put
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forward by most registration taxonomies is the choice of a deformation model.
This model acts as a regularizing scheme and embodies a priori information
about the registration problem at hand.

Namely, in view of the characteristics of the images to be registered (less than
ideal signal-to-noise ratio, tessellated structure, etc.) and of the inherently local
nature of the process estimating point motions, a regularization scheme is re-
quired, both to discipline an otherwise unruly displacement field and to enforce
application-dependent (i.e. user defined) constraints. In this latter respect, the
selection of a suitable deformation model is crucially informed by the objectives
of the medical application. For instance, in a tumor tracking system, the regis-
tration accuracy truly matters only in the region of interest defined around the
identified tumor whereas the registration must be accurate everywhere in the im-
age when building an anatomical atlas. Also of pivotal importance is the nature
of the registration process. Typically, as pointed out in [2], actual anatomical
deformations should not be accounted for in the same manner as variations in-
duced by the intrinsic characteristics of the imaging modalities. For instance, the
actual physical displacements generated by the growth of a tumor are different
in nature from the artificial chemical shifts observed in MR, which,though only
an artefact of measurement, induce an actual displacement in the image.

Essentially, we can identify two ways of controlling the rigidity of the deforma-
tion model, either directly by constraining the number of degrees of freedom of
the selected transformation, or indirectly via regularization of the displacement
field. We focus here on regularization approaches as they are more versatile in
nature (i.e. a larger variety of transformations can be modeled within the same
framework).

Among many others, we find, on the local end of the regularization spectrum,
the optical flow method of Lucas and Kanadé [3] which computes a weighted
average displacement in a small window centered around each pixel. In direct
line with optical flow, the Demons algorithm [4] uses Gaussian filtering over a
specifiable neighborhood. Noting that linear elastic models do not necessarily
preserve image topology for large displacement, Christensen et al. [5] proposed
a physics inspired viscous fluid model to enforce topological constraints within
a partial differential equation framework. In Pitiot et al. [6], histological sec-
tions were automatically segmented into smaller components which were then
registered independently, thereby implementing an anatomically guided regional
regularization. On the other end of the spectrum, Barber [7] estimated a global
affine transformation in a least-square sense from a correspondence field com-
puted at each pixel to register pelvic scintillographic images. In Ourselin et al.
[8], the use of M-estimators helped recover a global rigid or affine transforma-
tion in a robust fashion and reconstruct 3-D histological volumes. M-estimators
were also selected by Hellier et al. [9] to deal with the inherent heterogeneity
between relevant and inconsistent data on the one hand and neighborhoods with
a smooth or discontinuous expected field on the other hand. They used an adap-
tive multri-grid multi-resolution system to register T1-weighted MRIs. Similar
in spirit to our approach, Feldmard et al. [10] estimate a local rigid or affine
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transformation in a sliding sphere to regularize the displacement field computed
between two surfaces in 3-D.

Clearly, both the shape (in particular the size) of the neighborhood over which
the regularizing process is applied and the nature of this process should vary as
a function of the application. A common requirement of histological section reg-
istration problems is that of adequately matching the main anatomical features
without inducing unsightly and biologically improbable tissue distortions. Still,
as argued above, the desired rigidity of the registration process depends on the
envisioned application. On the one hand, when reconstructing a histological vol-
ume, the overall transformation must remain sufficiently rigid not to induce
anatomically spurious alignments in the reconstructed volume. Indeed, these
would not be compatible with the anatomical reference, usually an MR image,
to which it will be subsequently registered. On the other hand, when registering
slices which underwent different histological treatments to reveal different ge-
netic characteristics, the transformation space should be sufficiently flexible to
allow for the resolution of local variations in fine geometrical details.

Adaptable Rigidity. Classical techniques usually offer only limited, and often
indirect, control over the characteristics of this regularization process. More over,
little if any information intrinsic to the images is taken into account. For instance,
most piecewise techniques will subdivide the input images into rectangular areas
which makes little anatomical sense.

In th