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Preface

The Third International Workshop on Biomedical Image Registration (WBIR)
was held July 9-11, 2006, at Utrecht University, Utrecht, The Netherlands. Fol-
lowing the success of the first workshop (WBIR 1999), held in Bled, Slovenia,
and the second workshop (WBIR 2003), held in Philadelphia, Pennsylvania, this
meeting (WBIR 2006) aimed to once again gather leading researchers in the area
of biomedical image registration so as to present and discuss recent developments
in the field.

In modern medicine and biology, a valuable method of gathering knowledge
about healthy and diseased organs, tissues, and cells is the integration of comple-
mentary information from volumetric images of these objects. Such information
may be obtained by different imaging modalities, different image acquisition set-
ups, different object preparation procedures, or by sequential image acquisition
in follow-up studies or in dynamic imaging. A necessary pre-processing step for
the integration of image information is image registration by which images, con-
taining complementary information, are brought into the best possible spatial
correspondence with respect to each other. Enabling combination and quantifi-
cation of information about location, form and function, image registration is
nowadays finding increasing use in diagnosis, treatment planning, and surgical
guidance.

This year’s workshop consisted of 20 oral presentations with ample time for
discussions, 18 poster presentations and 2 tutorials: one addressing techniques
and applications and the other numerical methods for image registration. We
were delighted to welcome the participants to Utrecht and hope they found the
meeting an interesting, fruitful, enjoyable and stimulating experience. For the
readers unable to attend the workshop, we hope that you find these proceedings
a valuable record of the scientific programme.

We would like to thank everyone who contributed to the success of this
workshop: the authors for their excellent contributions, the members of the
Programme Committee for their review work, promotion of the workshop and
general support, the tutorial speakers for their outstanding educational contri-
butions, the local organization staff for their precious time and diligent efforts,
Philips Medical Systems for kind and generous financial support, and all the
attendees for their active participation in the formal and informal discussions.

July 2006 Josien P. W. Pluim
Boštjan Likar

Frans A. Gerritsen
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Multi-modal Image Registration Using Dirichlet-Encoded Prior
Information

Lilla Zöllei, William Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Removal of Interpolation Induced Artifacts in Similarity Surfaces
Olivier Salvado, David L. Wilson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Symmetric Diffeomorphic Image Registration: Evaluating Automated
Labeling of Elderly and Neurodegenerative Cortex and Frontal Lobe

Brian B. Avants, Murray Grossman, James C. Gee . . . . . . . . . . . . . . . 50

Deformation Based Morphometry Analysis of Serial Magnetic
Resonance Images of Mouse Brains
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Medical Image Registration Based on BSP
and Quad-Tree Partitioning

A. Bardera, M. Feixas, I. Boada, J. Rigau, and M. Sbert

Institut d’Informàtica i Aplicacions, Universitat de Girona, Spain
{anton.bardera, miquel.feixas, imma.boada,

jaume.rigau, mateu.sbert}@udg.es

Abstract. This paper presents a study of image simplification tech-
niques as a first stage to define a multiresolution registration framework.
We propose here a new approach for image registration based on the
partitioning of the source images in binary-space (BSP) and quad-tree
structures. These partitioned images have been obtained with a maxi-
mum mutual information gain algorithm. Multimodal registration exper-
iments with downsampled, BSP and quadtree partitioned images show
an outstanding accuracy and robustness by using BSP images, since the
grid effects are drastically reduced. The obtained results indicate that
BSP partitioning can provide a suitable framework for multiresolution
registration.

1 Introduction

Multimodal image registration plays an increasingly important role in medical
imaging. Its objective is to find a transformation that maps two or more images,
acquired using different imaging modalities, by optimizing a certain similarity
measure. Among the different similarity measures that have been proposed, mu-
tual information (MI)[2, 9] and normalized mutual information (NMI)[6] are the
most commonly used since they produce satisfactory results in terms of accu-
racy, robustness and reliability. However, MI-based methods are very sensitive
to implementation decisions, such as interpolation and optimization methods,
and multiresolution strategies [4]. The latter allow us to reduce the computa-
tional cost by means of a coarse-to-fine hierarchical representation of the images.
Crucial to building these hierarchies is the selection of the image simplification
strategy.

The main objective of this paper is to analyze the behavior of the regis-
tration process when the source images are simplified in BSP and quad-tree
structures, obtained with a maximum MI gain algorithm [5]. We will see that
multimodal registration experiments based on BSP partitioned images show a
remarkable accuracy and robustness, reducing substantially the grid effects com-
pared with both regular downsampled and quad-tree images. Since experimental
results demonstrate the good performance using these simplification strategies,
we suggest they are an ideal strategy for defining a multiresolution framework.
Such a framework can be used not only for registration purposes but also for
image processing or transmission in telemedicine environments.

J.P.W. Pluim, B. Likar, and F.A. Gerritsen (Eds.): WBIR 2006, LNCS 4057, pp. 1–8, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 A. Bardera et al.

This paper is organized as follows. In Section 2, we briefly describe image
registration and partitioning techniques using MI maximization. In Section 3,
a new image registration framework based on partitioned images is presented.
In Section 4, multimodal registration experiments show the suitability of the
presented approach. Finally, our conclusions are given in Section 5.

2 Previous Work

In this section we review the MI definition [1] and its application to image
registration [2, 9, 4, 7] and partitioning [5].

Mutual Information. Given two discrete random variables, X and Y , with
values in the sets X = {x1, . . . , xn} and Y = {y1, . . . , ym}, respectively, the MI
between X and Y is defined as

I(X, Y ) =
n∑

i=1

m∑
j=1

pij log
pij

piqj
(1)

where n = |X |, m = |Y|, pi = Pr[X = xi] and qj = Pr[Y = yj] are the marginal
probabilities and pij = Pr[X = xi, Y = yj] is the joint probability. I(X, Y ) is a
measure of the shared information between X and Y . It can also be expressed
as I(X, Y ) = H(X) − H(X |Y ) = H(Y ) − H(Y |X), where H(X) and H(Y ) are
the marginal entropies, and H(X |Y ) and H(Y |X) the conditional entropies [1].

A fundamental property of MI is the data processing inequality which can be
expressed in the following way: if X → Y → Z is a Markov chain, then

I(X, Y ) ≥ I(X, Z). (2)

This result demonstrates that no processing of Y , deterministic or random, can
increase the information that Y contains about X [1].

MI-based Image Registration. The most successful automatic image regis-
tration methods are based on MI, which is a measure of the dependence between
two images. The registration of two images is represented by an information chan-
nel X → Y , where the random variables X and Y represent the images. Their
marginal probability distributions, {pi} and {qj}, and the joint probability dis-
tribution, {pij}, are obtained by simple normalization of the marginal and joint
intensity histograms of the overlapping areas of both images [2]. The registration
method based on the maximization of MI, almost simultaneously introduced by
Maes et al. [2] and Viola et al. [9], is based on the conjecture that the correct
registration corresponds to the maximum MI between the overlapping areas
of the two images. Later, Studholme et al. [6] proposed a normalization of MI
defined by

NMI(X, Y ) =
H(X) + H(Y )

H(X, Y )
= 1 +

I(X, Y )
H(X, Y )

, (3)

which is more robust than MI, due to its greater independence of the overlap
area.
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The behavior of the MI-based method depends on the implementation deci-
sions. Thus, for instance, it is especially sensitive to the interpolator and opti-
mizator chosen or the binning and multiresolution strategies [4]. Generally the
grid points of the transformed image do not coincide with the grid points of
the reference image. Thus, the selection of an interpolator is required. Although
there are different interpolators, all of them introduce artifacts due to the error
patterns caused by the grid regularity [7]. On the other hand, the simple com-
putation of an MI-based similarity measure by sampling the images on a regular
grid leads to undesired artifacts, called grid effects [8].

MI-Based Partitioning Algorithm. An MI-based algorithm was presented
by Rigau et al. [5] to partition an image. Given an image with N pixels and
an intensity histogram with ni pixels in bin i, a discrete information channel
X → Y is defined, where X represents the bins of the histogram, with marginal
probability distribution {pi} = {ni

N }, and Y the image partitioned into pixels,
with uniform distribution {qj} = { 1

N }. The conditional probability distribution
{pj|i} of this channel is defined as the transition probability from bin i of the
histogram to pixel j of the image, and vice versa for {pi|j}. This channel fulfills
that I(X, Y ) = H(X) since, knowing the output (pixel), there is no uncertainty
about the input bin of the histogram. From the data processing inequality (2),
any clustering or quantization over X or Y , respectively represented by X̂ and
Ŷ , will reduce the MI of the channel. Thus, I(X, Y ) ≥ I(X, Ŷ ) and I(X, Y ) ≥
I(X̂, Y ).

From the above reasonings, a pixel clustering algorithm which minimizes the
loss of MI could be proposed. However, its high cost suggests adopting the con-
trary strategy, where the full image is taken as the unique initial partition and
is progressively subdivided according to the maximum MI gain for each parti-
tioning step. This algorithm is a greedy top-down procedure which partitions an
image in quasi-homogeneous regions. This method can be visualized from equa-
tion H(X) = I(X, Ŷ ) + H(X |Ŷ ), where the acquisition of information increases
I(X, Ŷ ) and decreases H(X |Ŷ ), producing a reduction of uncertainty due to the
equalization of the regions. Different stopping criteria can be used. For more
details, see [5].

3 Registration from Partitioned Images

Registration aims to find a transformation which maps two or more images by
optimizing certain similarity measure. Multiresolution and multisampling strate-
gies can be used to reduce its computational cost by means of a coarse-to-fine
hierarchical strategy which starts with the reference and floating images on a
coarser resolution. The estimates of the correspondence or parameters of the
mapping functions while going up to finer resolutions are progressively improved.
At every level they considerably decrease the search space and thus save compu-
tational time. In particular, downsampling techniques cause a great acceleration
of the registration process [4].
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(a) MR (b) CT (c) MR (d) PET

Fig. 1. Test images from the Vanderbilt database [3]

Obviously, a good strategy to speed-up the registration process could be to
use simplified images instead of the original ones. Our proposal is to register the
images obtained with the MI-based partitioning algorithm presented in Sec. 2.
These images contain a high information level for a reduced number of regions.
This proposal is a first approximation for considering the benefits of a multireso-
lution approach which would consist in the interplay of the different resolutions
of both images to accelerate registration. At each registration level, the best
suited resolution for each image would be selected. Crucial to developing this
multiresolution framework is the selection of the simplification strategy that has
to be applied to simplify images. In this paper, we investigate two subdivision
techniques, BSP and quadtree, to determine which provides better results.

To carry out this study, we propose a two step registration process. In the first
step, the original images are progressively partitioned with vertical or horizontal

(i.a) (i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

Fig. 2. (i) MR and (ii) CT images obtained from Fig. 1(a-b). (a) Quad-tree partitions
with MIR = 0.7, (b) quad-tree simplified images, (c) BSP partitions with MIR = 0.7,
and (d) BSP simplified images.
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Table 1. Percentage of regions obtained with respect to the initial number of pixels
corresponding to MR and CT original images of Fig. 1(a-b) and for a given MIR

MIR MR CT
BSP quad-tree BSP quad-tree

0.5 0.25 0.40 0.06 0.13
0.6 0.81 1.18 0.21 0.39
0.7 2.21 3.16 0.77 1.28
0.8 5.28 6.56 2.73 3.87
0.9 11.88 16.05 7.98 11.48

lines (BSP) or with a quad-tree structure. In both cases, an MI ratio given by
MIR(X, Ŷ ) = I(X,Ŷ )

H(X) is used as a stopping criterion. This ratio is a measure of
the simplification quality.

In Fig. 2 we illustrate the behaviour of this partitioning step applying it to
the 2D MR-CT pair of images (Fig. 1(a-b)). In Fig. 2(a,c) we show for each
original image the partitioning lines of the quad-tree and BSP structures and in
Fig. 2(b,d) the corresponding simplified images obtained by averaging for each
region the intensity of its pixels. We also collect in Table 1 the percentage of
regions obtained with the simplification with respect to the initial number of
pixels corresponding to the original MR and CT images. Note that a big gain
of MI is obtained with a relative low number of partitions. Thus, for instance,
in the CT case, a 70% of MI (MIR = 0.7) is obtained with approximately 1%
of the maximum number of partitions (number of pixels of the source image).
Observe that less partitions are needed in the CT image to extract the same
MIR than in the MR image. This is due to the fact that the higher the image
homogeneity, the higher the degree of simplification. In this example, the CT
image is more homogeneous than the MR image.

In the second step of the process, the previously partitioned images are regis-
tered using the NMI metric and the Powell’s algorithm as optimizer. To illustrate
the feasibility of this proposal, we have registered simplified images of the MR-
CT of Fig. 1(a-b), considering first an MIR of 0.6 and then an MIR of 0.7. The
registration results are shown in Fig. 3, where, respectively, (a) and (b) corre-
spond to MIR = 0.6 and MIR = 0.7, and (i) and (ii) to the quad-tree and
BSP partitioned images. In this figure, to illustrate better the obtained results,
we apply the transformation obtained from the registration of the simplified im-
ages to the original ones. In addition, for each one of these images we compute
the translational error (tx,ty). We consider the registration result of the original
images without any partitioning process as being correct, so this error measures
the deviation in x and y translation between the transformation corresponding
to the correct registration and the evaluated one. In all the cases, the rotational
error has been omitted due to its insignificant value. Observe that BSP images
with MIR = 0.6 (Fig. 3(ii.a)) achieve a lower error than quad-tree images with
MIR = 0.7 (Fig. 3(i.b)). This demonstrates that better results are obtained
with the registration of the BSP partitioned images.
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(i.a) (5.64, 16.33) (i.b) (2.38, 0.36)

(ii.a) (0.36, 0.71) (ii.b) (0.36, 0.17)

Fig. 3. Registration for the MR-CT pair of Fig. 1(a-b). (i) Quad-tree and (ii) BSP
subdivision methods for (a) MIR = 0.6 and (b) MIR = 0.7. The translational error
(tx,ty) is shown for each registration.

4 Results and Discussion

In order to evaluate more accurately the performance of the registration of MI-
based partitioned images, experiments on MR-CT (Fig. 1(a-b)) and MR-PET
(Fig. 1c-d) images are presented. In these experiments, the corresponding pair
of images have the same degree of simplification, i.e., an MR quad-tree (or BSP)
image with MIR = 0.7 is registered with a CT quad-tree (or BSP) with the
same MIR. These results are compared with regular downsampled images.

In Fig. 4 the results of our experiments are presented. The behavior of the NMI
measure is analyzed moving the floating image one pixel at each step through the
X axis from -100 to 100 pixel units around the origin. No interpolation artifacts
appear since there is no pixel interpolation. In all the plots, the bottom curve
corresponds to the NMI registration of the source images. The MR-CT and
MR-PET results are shown in the first (i) and second (ii) rows, respectively.
In Fig. 4 (a), we illustrate the NMI measure obtained with different downsam-
plings of the original images. From bottom to top, the NMI curves correspond to
downsampling of 2×2, 4×4, 8×8 and 16×16 pixels, respectively. Note that, high
artifacts appear at every n pixels coinciding with the downsampling factor. In
Fig. 4(b-c), we illustrate the NMI values for the quad-tree and BSP partitioned
images, respectively. Each curve corresponds to a different degree of simplifica-
tion. From bottom to top, MIR ranges from 0.9 to 0.5. Observe in Fig. 4(b) that
the quad-tree partition also produces correlation artifacts due to the regularity
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Fig. 4. (i) MR-CT (Fig. 1(a-b)) and (ii) MR-PET (Fig. 1(c-d)) registration results
corresponding to (a) downsampled, (b) quad-tree, and (c) BSP images. The horizontal
axis represents the slice translation on the X-axis (in pixels) and the vertical axis the
value of NMI. For each plot, the NMI measure for different degrees of downsampling
(a) and simplification (b-c) of the images are shown.

of its partitions. However, these artifacts are slightly reduced with respect to
the downsampling case, since, although the registered images have the same de-
gree of simplification, the number and the position of the generated quad-tree
partitions are not the same.

Finally, in Fig. 4(c) we analyze the BSP partition. In this case, the grid arti-
facts are nearly completely eliminated since neither the position nor the number
of partitions of the images coincide. Registration is more robust since the prob-
ability of finding a local maximum is lower as it is shown by the smoothness of
BSP plots. Taking into account that the perfect registration is given by the max-
imum bottom curve, observe the high accuracy, i.e., the coincidence of the curve
maxima, of the registration reached with the BSP images. For instance, an accu-
rate registration is achieved with MIR = 0.7, which represents an approximate
reduction of 99% of the original number of pixels.

Experiments with the MR-PET images shown in Fig. 4(ii) behave similarly
to the MR-CT case in Fig. 4(i). In both cases, the BSP simplification scheme
behaves considerably better than both quad-tree simplification and downsam-
pled images in terms of the reduction of grid artifacts. From these experiments
we can conclude that the BSP approach is more robust and accurate.

5 Conclusions and Future Work

In this paper, we have presented a new technique for image registration based
on the partitioning of the source images. Thepartitioning algorithm relies on the
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maximization of the mutual information gain for each refinement decision. The
presented method is a first step towards a full multiresolution registration ap-
proach. Two alternatives (binary space partition and quad-tree simplifications)
have been analyzed and compared with a usual regular downsampling technique.
The quality of the subdivision has been investigated in terms of the efficiency
in registration. Results have shown the superior quality of the BSP subdivision,
which allows a smoother registering. The BSP approach performs also better
than regular downsampling. The next step in our research will consist in devel-
oping a multiresolution framework using the BSP subdivision.

Acknowledgments

The images used in our experiments were provided as part of the project,
“Evaluation of Retrospective Image Registration”, National Institutes of Health,
Project Number 1 R01 NS33926-01, Principal Investigator Prof. J. Michael Fitz-
patrick, Vanderbilt University, Nashville, TN. This project has been funded in
part with grant numbers TIN2004-08065-C02-02, TIN2004-07451-C03-01 and
2001-SGR-00296.

References

1. Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley
Series in Telecommunications, 1991.

2. F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens. Multimodality
image registration by maximization of mutual information. IEEE Transactions on
Medical Imaging, 16(2):187–198, 1997.

3. National Institutes of Health. Retrospective Image Registration Evaluation. Van-
derbilt University, Nashville (TN), USA, 2003. Project Number 8R01EB002124-03,
Principal Investigator J. Michael Fitzpatrick.

4. Josien P.W. Pluim, J.B.A. Maintz, and M.A. Viergever. Mutual-information-based
registration of medical images: a survey. IEEE Transactions on Medical Imaging,
22:986–1004, 2003.

5. J. Rigau, M. Feixas, M. Sbert, A. Bardera, and I. Boada. Medical image segmen-
tation based on mutual information maximization. In International Conference on
Medical Image Computing and Computed Assisted Intervention (MICCAI 2004),
Proceedings, Rennes-Saint Malo, France, September 2004.

6. Colin Studholme. Measures of 3D Medical Image Alignment. PhD thesis, University
of London, London, UK, August 1997.

7. J. Tsao. Interpolation artifacts in multimodal image registration based on maximiza-
tion of mutual information. IEEE Transactions on Medical Imaging, 22:854–864, 2003.
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A Bayesian Cost Function Applied
to Model-Based Registration of Sub-cortical

Brain Structures

Brian Patenaude, Stephen Smith, and Mark Jenkinson

FMRIB Centre, University of Oxford

Abstract. Morphometric analysis and anatomical correspondence across
MR images is important in understanding neurological diseases as well as
brain function. By registering shape models to unseen data, we will be able
to segment the brain into its sub-cortical regions. A Bayesian cost function
was derived for this purpose and serves to minimize the residuals to a pla-
nar intensity model. The aim of this paper is to explore the properties and
justify the use of the cost function. In addition to a pure residual term (sim-
ilar to correlation ratio) there are three additional terms, one of which is a
growth term. We show the benefit of incorporating an additional growth
term into a purely residual cost function. The growth term minimizes the
size of the structure in areas of high residual variance. We further show the
cost function’s dependence on the local intensity contrast estimate for a
given structure.

1 Introduction

Morphometric changes in sub-cortical brain regions are associated with psychi-
atric disorders, neurodegenerative diseases, and aging. Furthermore, anatomi-
cal correspondence across MR images is needed to perform group analysis of
functional data. Manual delineation of subcortical structures is a very time con-
suming task and requires considerable training. One approach to solving this
problem is by registering a probabilistic brain atlas to new data [1]; a more
recent approach also incorporates anisotropic Markov Random Fields and inten-
sity priors [2]. We are proposing to solve the registration/segmentation problem
by registering statistical shape models to MRI data.

A Bayesian similarity function which aims to minimize the residuals to a pla-
nar intensity model was derived to drive the registration. The aim of this paper
is to investigate the cost function’s properties and justify its use. Like correla-
tion ratio, this cost function minimizes residuals, however it has three additional
terms. We show that the added benefit of the full Bayesian cost function over
a pure residual function is due to the addition of a growth term. The balance
between the growth and residual term is governed by the local intensity con-
trast for a given structure. The cost function’s relationship to the local intensity
contrast is examined as well.

J.P.W. Pluim, B. Likar, and F.A. Gerritsen (Eds.): WBIR 2006, LNCS 4057, pp. 9–17, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Methods

2.1 Model Building

The training set consisted of 93 manually labelled T1-weighted MRI brain scans
(courtesy of the CMA in Boston). The labelling is of a high quality and their
reliability and reproducibility have been documented [3, 4]. As a first step, the
training data are first affine-registered to MNI152 space. The training points are
then automatically assigned to the manually labelled data using deformable sur-
faces. Within-surface motion constraints are imposed on the deformation process
to preserve point correspondence. We assume a multivariate Gaussian model, and
estimate its parameters using PCA [5, 6].

Figure 1a shows the average mesh for the left putamen, pallidum, and thala-
mus (three sub-cortical brain structures), which are used to initialize the regis-
tration. The transformations are applied directly to the model surface meshes,
which are then converted into image space for evaluation. The conversion to im-
age space is discussed in more detail in the following section. The deformations
are limited to linear combinations of the modes of variation, and are proportional
to the cost-gradient in the direction of the modes of variation. Figure 1b shows
the first three modes of variation for the left putamen.

2.2 Cost Function

Relating the surfaces to an MRI image is done using a Bayesian similarity func-
tion that was derived specifically for this purpose. It is expressed in terms of the
posterior probability of a transformation T (the deformation of the surface mod-
els) given the observed MR intensity data, Y , and the statistical shape model,
S. In its negative log-likelihood form it acts as a cost function and has the form:

FB = − log (p(T |Y, S)) ∝ − log (p(T )) +
1
2

log | det (GT
inGin)|

− log (Γ (
Neff

2
− 1)) +

Neff

2
log (πC−2Y T RY ) (1)

where p(T ) is the prior probability of a transformation (based on the statistical
shape model), Gin is the image generator matrix (whose columns are reshaped
model intensity images – see below), Neff is the effective number of voxels in the
shapes of interest (degrees of freedom), C is an estimate of the local intensity
contrast, Y T RY is the residual variance in the area of interest, where R is a
residual forming matrix. This similarity function (described more fully in [7, 8])
is based on the principle of an image generation function that relates the surfaces
to images with voxel intensities. By fitting a model to the image intensities within
the mesh region, an intensity image is generated according to the parameter
estimates of the model. The particular form of image generation function chosen
is one that allows the voxels within an image to have a constant intensity plus
three spatially-linear gradient terms. That is, a planar fit in intensity is done
within the voxels bounded by each surface (with appropriate allowance for partial
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Fig. 1. a) Average mesh for left putamen, pallidum, and thalamus. b) First three modes
of variation of left putamen. The colours are proportional to the normalized magnitude
of the mode vector at each vertex. Dark blue corresponds to the largest magnitude,
and transitions to green, yellow, then red, with decreasing magnitude.

Fig. 2. T1 weighted image, FFND (blue scale) and FFPD (red scale) maps for subject
24 using the full and residual only cost function. There was a reduction in FD of 0.32,
0.24 and 1.36 for the left putamen, pallidum and thalamus respectively.
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volume effects). The best planar fit is then subtracted from the real data leaving
the residuals (Y T RY ). This is the same principle that the Correlation Ratio
uses, except that for the Correlation Ratio only a mean value is allowed in the
fitting. Here we add the linear terms in order to account for bias field effects and
slow changes in tissue densities across structures.

In forming the posterior probability, prior probabilities are required for the
transformation, p(T ) and for the intensities in regions outside the shapes of
interest. The form we take for this transformation prior, p(T ), is a multivariate,
truncated uniform distribution, where we use the statistical shape model to set
the truncation limits at ±3

√
λk (and λk is the variance of the kth mode in the

PCA on the training shapes). For the prior on the intensities at the borders of the
shape we use a uniform density with truncation proportional to an empirically
derived estimate for the intensity contrast of that shape, C.

2.3 Testing

Methods. Models have been created for 17 sub-cortical structures, however a
subset of three structures were used for testing. The left putamen, pallidum and
thalamus were chosen as they span several shapes, sizes, and boundary contrasts.
The putamen has good contrast with the surrounding structures, despite weaker
contrast where it borders the pallidum. The putamen may also be proximal to
cortical sulci which can be problematic due similar intensity ranges. Medially,
the pallidum intensity values transition smoothly into the white matter, which
results in weak contrast. Medially, the thalamus has high contrast with the
lateral ventricles, however suffers lateral blending into the white matter. The
thalamus also poses the challenge of having intensity inhomogeneities across its
sub-regions; this is due to changes in the grey matter density.

Our investigation of the full (Bayesian) cost function, FB is done by comparing
the registration under the full versus simple form of the cost function. The simple
form is a purely residual-based cost function similar to the Correlation Ratio,
although slightly different to the fourth term in the full cost function. The purely
residual-based cost function, which is simpler and more intuitive, is expressed
as:

FR ∝ − log (
πC−2Y T RY

Neff
) (2)

For practical implementation/optimization purposes the probability density
function of the shape model is truncated at ±3

√
λk (λk is the variance along the

kth eigen-vector) and the value of C was set to 28%, 22%, and 32% of the full
intensity range for the left putamen, pallidum, and thalamus respectively. The
C parameter adjusts the balance between the residual and the growth term. We
refer to the third term in the full cost function as the growth term; this behaves
such that as a structure increases in size, the cost decreases. The degree to which
this impacts the registration is governed by the C parameter. The registration
truncated the number of modes at 25, which explained 97.3%, 97.0%, 96.4% of
the variation in the left putamen, pallidum and thalamus respectively. The mul-
tiple modes of variation were searched simultaneously using a conjugate-gradient
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method. The registrations were performed on T1-weighted MRI images, each im-
age had corresponding manual labels (provided by the CMA), which were only
used for validation. All the test data was excluded from the training data. The
manual labels were treated as our gold standard.

Evaluation. The three measures used to compare the registration output with
the manual labels are defined in equation 3, 4 and 5.

FFND =

∑
aεA∩M ′

min
bεA∩M

D(a, b)

Nmanual
(3)

FFPD =

∑
aεA′∩M

min
bεA′∩M

D(a, b)

Nmanual
(4)

FD = FFND + FFPD (5)

where FFND is the fractional false negative distance, FFPD is the fractional
false positive distance and FD is the fractional distance. A and M are the sets of
voxels assigned to a particular label by the registration and manual method re-
spectively. A′ and M ′ are the complements of the sets A and M respectively. D is
a Euclidean distance operator, and Nmanual is the volume of the manual labelled
region. FFND is a distance weighted sum of the false negative voxels, normal-
ized by the number of voxels in the manual segmentation (our gold standard).
For FFND, D is defined as the minimum Euclidean distance between the false
negative voxel and intersection of the new label and the gold standard. FFPD
is the normalized distance weighted sum of the false positive voxels. FD is the
normalized distance weighted sum of all mislabelled voxels (summary statistic
of total error).

These distance-weighted sums increase sensitivity to large variations from the
gold standard, thereby putting less emphasis on small dilations or erosions.

3 Results and Discussion

Figure 3 a, b, and c show the difference in FFND, FFPD, and FD between the
full and pure residual cost function for the left putamen, pallidum and thalamus
respectively. The registration was performed on 30 previously unseen images.
There is a significant decrease in FD when using the full form of the cost func-
tion, suggesting a more accurate registration. The accompanying decrease in the
FFND suggests that the residual form was systematically underestimating the
structure, and that the addition of the growth term corrected for this. This can be
seen in figure 2, where the thick blue band at the boundary of the true structure
for the pure residual case signifies the under-estimation (FFND is represented
by the blue scale). The additional growth term seems to allow the algorithm to
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Fig. 3. Difference in FFND, FFPD, FD between the full and residual only cost func-
tions for the left putamen, pallidum and thalamus. The difference is calculated such
that negative values correspond to lower fractional distance in the full cost function
case. FD is the summary statistic, which indicates the overall quality of the registration.
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Fig. 4. Mean FFND, FFPD, FD for the left putamen, pallidum and thalamus as a func-
tion of the local contrast estimate, C (30 subjects). The error bars show ±1 standard
deviations.
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the push towards the true boundary. Though not as significantly, the improve-
ment in FFND comes at a cost to FFPD. This is not unexpected; in the case
of reduced FFND, the fit boundary is approaching the true anatomical one and
is hence approaching areas of partial voluming. The cost to FFPD is evident in
figure 2 in the case of the thalamus, the increase in FFPD (red band) on the
lateral side of the of the thalamus is a symptom of poor contrast. In the pure
residual case, the resultant structure is smaller and mostly encompassed by the
true structure, hence you would expect very few false positives. The residual
cost provides no reason for the model to expand to the true limits of the region,
particularly if there are nonlinear inhomogeneities in the structure. The thala-
mus contains subregions of varying grey-matter densities (hence varying mean
intensities). Our model assumes linear gradients across a structure and hence
cannot properly model the abrupt changes in mean intensity.

Figure 4 shows the change in distance measures for varying local intensity
contrast estimates. The FFPD is linearly increasing, however the FFND is ex-
ponentially decreasing over the region of contrasts. For each structure there is
a clear minimum mean FD, and hence optimal value for C. The variance in FD
for an appropriate value of C is relatively small. For a set of images from the
same scanner, C may be calibrated on a single image. C, however, should be
varied over an adequate range and sampled finely enough to cope with the large
variance for poor values of C.

4 Conclusions

We have shown that the full Bayesian cost function outperforms the simple
residual-only cost function. The full cost function permits structural growth in
regions of low variance. This is important as it is easier to achieve a lower residual
for a smaller area within a structure, and so a growth term is necessary. Indeed,
this is what was observed; without the growth term the structures tended to
shrink within the region of interest. The determinant term was not discussed
here, as it was heavily outweighed by the residual and growth term and did not
have much impact on the results. The local estimate of intensity contrast is crit-
ical to the registration performance. The performance across a range of C values
is well behaved, and the minimum mean FD is clear. Currently this framework
for registration is modality independent, as it depends solely on residual vari-
ance after a general intensity fit (mean plus linearly varying spatial terms) per
structure, and does not require any prior knowledge about absolute intensity
values.
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Abstract. 3D inter-subject registration of image volumes is important for tasks 
such as atlas-based segmentation, deriving population averages, or voxel and 
tensor-based morphometry. A number of methods have been proposed to tackle 
this problem but few of them have focused on the problem of registering whole 
body image volumes acquired either from humans or small animals. These 
image volumes typically contain a large number of articulated structures, which 
makes registration more difficult than the registration of head images, to which 
the vast majority of registration algorithms have been applied. This paper pre-
sents a new method for the automatic registration of whole body CT volumes, 
which consists of two steps. Skeletons and external surfaces are first brought 
into approximate correspondence with a robust point-based method. Trans-
formations so obtained are refined with an intensity-based algorithm that 
includes spatial adaptation of the transformation’s stiffness. The approach has 
been applied to whole body CT images of mice and to CT images of the human 
upper torso. We demonstrate that the approach we propose can successfully 
register image volumes even when these volumes are very different in size and 
shape or if they have been acquired with the subjects in different positions. 

1   Introduction 

Image registration is an essential tool in order to be able to follow the progression of 
diseases, to assess response to therapy, to compare populations, or to develop atlas-
based segmentation methods. The latter involves segmenting structures in one reference 
volume, commonly called the atlas, and using this reference volume to segment these 
structures in other volumes. This necessitates being able to register the atlas to the 
volumes that need to be analyzed. Because it involves a number of subjects, non-rigid 
registration methods are required to address this problem. A number of methods and 
techniques have been developed over the years to achieve this; chief among them are 
intensity-based techniques and more specifically, methods that rely on Mutual Informa-
tion (MI) [1][2].  However, most automatic methods that have been proposed have been 
applied to head images only. This is because head images are relatively simple 
compared to whole body images. Head images contain one single major identifiable 
structure (the cranium) as opposed to whole body images that contain many articulated 



 Automatic Inter-subject Registration of Whole Body Images 19 

structures (the bones). In head images the cranium surrounds the brain, therefore 
constraining the deformation. In whole body images, the situation is the opposite: soft 
tissue surrounds the bones, leading to very large inter-subject size and shape differences. 
All these differences make the registration of whole body images much more difficult 
than the registration of head images. Despite these difficulties non-rigid registration 
techniques for extra-cranial applications have been proposed for specific applications 
such as the registration of breast, abdomen, lung, or prostate images. For instance, 
Camara et al. [3] use a Free-Form Deformation (FFD) approach guided by a gradient 
vector flow combined with a grey-level MI non-linear registration algorithm for thoracic 
and abdominal applications. Rueckert et al. [4] also use FFD to register breast images 
acquired before and after contrast injection; these are image volumes acquired from the 
same subject. Cai et al. [5] present a validation study of CT and PET lung image 
registration and fusion based on the chamfer-matching method; this study also involves 
images acquired from the same subject.  

In general, however, fully automatic inter-subject or even intra-subject registration 
of whole body images remains a challenge. One of the main reasons is that, in 
practice, non-rigid registration algorithms need to be initialized with a rigid or affine 
transformation. If the image volumes do not contain articulated structures, as is the 
case for head images, a single transformation is sufficient. If, on the other hand, these 
image volumes contain a number of bony structures, which are rigid but whose 
relative position changes from acquisition to acquisition, a single transformation is 
insufficient. A number of transformations need to be computed, one for each element 
in the articulated structure. These transformations then need to be somehow 
combined.  This is the approach followed by Little et al. [6]. These authors present a 
technique designed for the intra-subject registration of head and neck images. 
Vertebrae are registered to each other using rigid body transformations (one for each 
pair of vertebrae). Transformations obtained for the vertebrae are then interpolated to 
produce a transformation for the entire volume. One problem with the approach is that 
it requires segmenting and identifying corresponding vertebrae in the image volumes. 
Because corresponding vertebrae are registered with rigid-body transformations, the 
approach is also applicable only to intra-subject registration problems.  Martin-
Fernandez et al. [7] propose a method, which they call articulated registration. This 
approach requires the labeling of landmarks to define wire models that represent the 
bones. A series of affine transformations are computed to register the rods, which are 
the elements of the wires. The final transformation for any pixel in the image is 
obtained as a linear combination of these elementary transformations with a weighting 
scheme that is inversely proportional to the distance to a specific rod. This technique 
has been applied to the registration of hand radiographs.  Arsigny et al. [8] also 
propose an approach in which local rigid or affine transformations are combined. 
They note that simple averaging of these transformations leads to non-invertible 
transformations, and they propose a scheme that permits the combination of these 
local transformations, while producing an overall transformation that is invertible. 
Their method is applied to the registration of histological images. The authors 
comment on the fact that their method could also be used for articulated structures but 
do not present examples. Recently, Papademetris et al. put forth an articulated rigid 
registration method that is applied to the serial registration of lower-limb mouse 
images [9]. In this approach, each individual joint is labeled and the plane in which 
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the axis of rotation for each joint lies is identified. A transformation that blends 
piecewise rotations is then computed. The authors comment of the fact that piecewise 
rigid models often lead to transformations that are discontinuous at the motion boun-
daries, which produces folding and stretching. The approach they propose produces a 
transformation that is continuous at these interfaces. The authors have applied their 
method to the registration of lower limbs in serial mouse images. They suggest that 
their technique could be used to initialize an intensity-based algorithm but do not 
present results.  

In summary, a survey of the literature shows that only a few methods have been 
proposed to register images including articulated structures. The general approach is 
to compute piecewise rigid or affine transformations and to somehow blend and 
combine these transformations. Unfortunately, this approach is often not practical 
because it requires identifying various structures in the images such as joints or 
individual bones. In this paper we propose a method that does not require structure 
labeling. This method can thus be automated, and we demonstrate its performance on 
small animal and human images.  

2   Methods 

There are two steps in the automatic registration method we propose.  In the first step, 
we register only bony structures and the outside body surfaces. The transformation we 
compute in this first step is then used to initialize an intensity-based registration 
algorithm. Because our aim is to develop a fully automatic technique, we have ruled out 
methods that require identifying and labeling homologous structures. These methods 
would indeed require developing general and robust feature extraction algorithms, 
which is not easy to achieve. Hence, in our first step, we have chosen to rely on the 
robust point-based registration algorithm proposed by Chui et al. [10]. This algorithm 
takes as input two clouds of points and iteratively computes a correspondence between 
these points and the transformation that registers them, without requiring manual 
labeling. In addition, the two sets of points also do not need to have the same cardinality 
and the algorithm can deal with the problem of outliers.  Correspondence is computed 
with the softassign algorithm proposed by Gold et al. [11]. Once correspondence is 
determined, a thin plate spline-based non-rigid transformation is computed to register 
the points. Because we use this algorithm as an initial step, the transformation it 
produces does not need to be extremely accurate. Point clouds in the two volumes can 
thus be selected in a somewhat arbitrary fashion.  

In the approach we have tested so far, bone surfaces are first extracted, which can 
be done easily in CT images with a simple threshold. We do this in both image sets 
and sample the two surfaces to create the two clouds of points. Currently, we do not 
use any geometric feature, such as the surface curvature, to select the points. Results 
will show that this approach leads to acceptable results even when the skeletons are in 
very different positions. We then extract the external surface of the body. This is also 
easily achieved with an intensity threshold. As is the case for the bone surfaces, the 
whole body surfaces are sampled to create a second cloud of points that is added to 
the first one. This leads to two clouds of points, one per image volume, that typically 
contain 1000 to 3500 points, which are registered using the robust point-based 
approach of Chui et al.  
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The second step in our approach relies on an intensity-based registration 
algorithm we have proposed recently [12], which we call ABA for adaptive bases 
algorithm, to refine the results obtained in the first step. In this algorithm, the 
deformation field that registers the two images is modeled as a linear combination 
of radial basis functions with finite support. Coefficients for these basis functions 
are computed that maximize the normalized mutual information (NMI) between the 
images. As is often the case for non-rigid registration algorithms based on basis 
functions, our algorithm includes mechanisms designed to produce transformations 
that are topologically correct (i.e., transformations that do not lead to tearing or 
folding). This is done by imposing constraints on the relative value of the 
coefficients of adjacent basis functions. Furthermore, we compute both the forward 
and the backward transformations simultaneously, and we constrain these 
transformations to be inverses of each other. In our experience, this leads to 
transformations that are smooth and regular. 

In our application, there are two broad categories of structures: bones and soft 
tissues. Because we are dealing with inter-subject registration issues, both bones 
and soft tissues need to be deformed (in the intra-subject registration case, 
individual bones can be registered with rigid-body registration methods). However, 
the amount of deformation typically observed for bony and soft tissue structures is 
very different, i.e., two livers can have vastly different shapes and sizes when the 
overall shape and size of individual bones vary little across subjects. This suggests 
using transformations whose physical properties vary spatially. These transfor-
mations should be relatively stiffer for bony structures than they are for soft tissue 
structures.  Our algorithm allows us to do pre-cisely this. As mentioned above, 
regularization of the deformation field in our algorithm is obtained by imposing 
constraints on the relative value the coefficients associated with adjacent basis 
functions. In practice, we impose a threshold on the difference between the values 
of these coefficients. The smaller the threshold, the stiffer the transformation is. We 
can thus define what we call stiffness maps, which are maps that specify the value 
of this threshold in various regions of the image. In previous work [13], we have 
shown that this feature improves atlas-based segmentation results when the patient 
image volume contains very large ventricles or space-occupying lesions. Here, we 
create a simple binary stiffness map: the transformation is constrained to be stiffer 
over bony structures than over soft tissue structures.  Results obtained when using 
two stiffness values, one for the bones and the other for soft tissue, improve when 
compared to those obtained with a single value.  

3   Results 

Our approach has been evaluated on two types of images: whole body mouse 
scans and upper body human scans. We used an  Imtek MicroCAT II small animal 
scanner to generate two 512x512x512 mouse CT volumes, with a voxel resolution of 
0.125x0.125x0.125mm3.  Human data sets are 512x512x184 CT volumes with a voxel 
resolution of 0.9375x0.9375x3mm3. Figure 1 shows results obtained with the skeletons  
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of mouse volumes. The left panel 
shows the two skeletons in their 
original position. The right panel 
shows the same but after point-based 
registration. Figure 2 illustrates results 
obtained when both steps are applied. 
The left panel shows one CT slice in 
one volume (the source) and the right 
panel is the corresponding slice in the 
other volume (the target); note the 
large differences in size, shape and 
posture between these volumes. The 
middle panel shows the results we 
obtain when registering the source 
volume to the target volume. To 
facilitate the comparison, yellow 
contours of the lung have been drawn 
on the target image and copied on all 
the other ones. 

Figures 3 and 4 show results we have obtained with upper torso CT images, and 
they illustrate the advantage of using two stiffness values. In both figures, the left 
panel is the source image, the right panel the target image. The second, third and 
fourth panels show the source volume registered to the target volume using (1) a 
stiff transformation, (2) a very elastic transformation, and (3) a transformation with 
two stiffness values. In figure 3, only bones are shown. In figure 4, the entire 
images are shown. When a stiff transformation is used, bones are deformed in 
physically-plausible ways, but soft tissues are not registered very accurately (arrows 
on the second panel of figure 4). When a more elastic transformation is used, bones 
are deformed incorrectly (regions highlighted in the third panels from the left). 
Using two stiffness values permits transformations to be computed that lead to 
satisfactory results both for the bony and soft tissue regions.  

 

Fig. 2. One coronal slice in the source volume (left); the corresponding slice in the target 
volume (right) , and the transformed source image after registration (middle) 

a) b) c) 

Fig. 1. Bony structures in two CT volumes 
a) before the registration and b) after the 
registration 

a) b) 
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Fig. 3. a) Skeleton of the source image, e) skeleton of the target image. b), c), and d) source 
skeleton registered to target skeleton using a stiff transformation, a very elastic transformation, 
and two stiffness values, respectively. 

 

Fig. 4. a) One coronal slice in the source volume, e) corresponding slice in the target volume, 
b), c), and d) source image registered to target image using a stiff transformation, a very elastic 
transformation, and two stiffness values, respectively 

Figure 5 illustrates results we have obtained with another set of upper torso volumes.  
The left panel shows one sagittal image in one of the volumes (the source). The right 
panel shows the slice with the same index in the second volume (the target) prior to 
registration. The second, third, and fourth panels show results obtained with our 
intensity-based algorithm alone, results obtained with point-based registration alone, 
and results obtained when both approaches are combined, respectively. The second 
panel shows typical results obtained when non-rigid registration algorithms cannot be 
initialized correctly. The overall shape of the registered volume appears correct but  
 

 

Fig. 5. a) One sagittal slice in the source volume, e) the corresponding slice in the target 
volume, b), c), and d) registration results obtained with intensities alone, points alone, and with 
both methods combined, respectively 

a) b
)

c) d
)

e)

a) b) c) d) e)

a) b) c) d) e)
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bones have been deformed incorrectly. A closer inspection of the deformation field 
(not shown here for lack of space) also shows that the deformation field is very 
irregular. The deformation field obtained with the point-based registration is smooth 
but the registration relatively inaccurate, as shown in the third panel.  As can be seen 
in this panel, the shape of the head and its size are not exactly similar to those shown 
in the right panel. Similarly, the sizes of the vertebrae are incorrect. The fourth panel 
shows that the best results are obtained by combining both approaches.  

4   Conclusions 

In this paper, we present what we believe is the first automatic approach for the 
registration of articulated structures applicable to inter-subject registration problems. 
Existing work typically relies on a combination of piecewise rigid body transformations, 
which requires localizing joints in the image accurately. This is time-consuming and 
hard to automate. In our method, the process can be fully automated by registering first 
the entire skeleton using a point-based method that does not require labeling of homo-
logous points. This produces a transformation, which may not be extremely accurate but 
is nevertheless sufficient to initialize an intensity-based non-rigid registration algorithm. 
The second step leads to an accurate registration.   We also show that better results can 
be obtained with two stiffness values than with one. Future work includes improving the 
way points are selected for the point-based registration algorithm and conducting a 
quantitative evaluation and comparison of these algorithms.  
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Abstract. The hierarchical subdivision strategy which decomposes the
non-rigid matching problem into numerous local rigid transformations is
a very common approach in image registration. For multi-modal images
mutual information is the usual choice for the measure of patch similar-
ity. As already recognized in the literature, the statistical consistency of
mutual information is drastically reduced when it is estimated for regions
covering only a limited number of image samples. This often affects the
reliability of the final registration result.

In this paper we present a new intensity mapping algorithm which
can locally transform images of different modalities into an intermediate
pseudo-modality. Integrated into the hierarchical framework, this inten-
sity mapping uses the local joint intensity histograms of the coarsely reg-
istered sub-images and allows the use of the more robust cross-correlation
coefficient for the matching of smaller patches.

1 Introduction

Medical imaging technologies have become indispensable components in most
clinical procedures during the last years. The wide availability of different imag-
ing modalities tremendously increased the need for fast and accurate multi-modal
image registration methods. Several surveys and textbooks (e.g. [1, 2, 3, 4, 5] and
references therein) have already been published providing a broad and general
overview of image registration techniques. The most accurate methods for non-
rigid registration are based on physical models but they proved to be computa-
tionally very expensive. Therefore, various simplifications have been investigated
based on different heuristics to approximate the underlying physical reality by
alternative mathematical models. One of these approaches has been proposed
by Likar and Pernuš in [6]. They developed a hierarchical image subdivision
strategy that decomposes the non-rigid matching problem into an elastic inter-
polation of numerous local rigid registrations of sub-images of decreasing size.
As the local registrations are achieved by maximizing mutual information (MI),
the algorithm can be generally applied both for mono- and multi-modal cases.
Unfortunately, the usage of MI for image matching has several drawbacks in
connection with either interpolation artifacts or the statistical consistency of

J.P.W. Pluim, B. Likar, and F.A. Gerritsen (Eds.): WBIR 2006, LNCS 4057, pp. 26–33, 2006.
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MI (e.g. in [5, 6, 7, 8]). We have demonstrated in [9] that the related problems
are becoming increasingly serious during the image subdivision process due to
the decreased number of samples used to estimate the two-dimensional joint in-
tensity histogram. This decrease of the MI’s statistical consistency weakens the
performance of the entire non-rigid registration and limits the number of levels
which can be generated during the hierarchical subdivision. It would be there-
fore desirable to replace MI with a more robust similarity measure. However,
the usage of the cross-correlation coefficient (CC) favored by most researchers is
restricted to the mono-modal case.

In the past few years, several methods have been proposed either for esti-
mating a functional relationship between the intensities of images from different
modalities or for the direct estimation of similarity measures which integrate
this functionality in their definition. For example, the VIR criterion presented
by Woods in [10] proved to be efficient for matching PET with MR images. In [11]
an extension was presented that removed the need for manual segmentation and
extended the method’s applicability to other modality combinations. Another
extension of Woods’ VIR criterion called correlation ratio is described in [12].
Later on, in [13], an adaptive intensity correction was proposed that combines
the correlation ratio with the demons algorithm [14]. A completely different ap-
proach for CT-MR cross-registration is described in [15] and bases on a simple
intensity mapping of the original CT image such that bone and air have identical
appearance as in an MR image. All the proposed methods, however, lead to the
appearance of fake structures within the mapped image, which strongly limits
their usability. These ghost features caused by imaging details which are not
visible in both modalities lead to ambiguities that result in misregistrations.

In this paper we propose a local intensity mapping that allows to switch from
MI to the more robust CC at finer levels in the registration hierarchy. In con-
trast to the already existing approaches that estimate the functional relationship
from one image modality to the other, we propose to build a common intermedi-
ate pseudo-modality. The intensities in both images are mapped simultaneously
onto a common contrast space, which is not necessarily one of the two source
intensities, but rather a combination of them. Although the transformed images
may locally resemble one of the modalities, on an overall scale this is not true.
In this paper we present a novel mapping, which is demonstrated on CT/MR
image registration but is generally applicable for any combination of modalities.

2 Method

The mapping we propose in this paper is relying on the observation that the
performance of a registration algorithm will not increase if one of the images
contains more structural details than the other. On the contrary, details visible in
only one of the images can lead to ambiguities by inducing misleading optima in
the similarity measure. The performance of the registration procedure thus only
depends on those image features which exist simultaneously in both modalities.
The proposed mapping procedure builds an intermediate pseudo-modality of
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(a) (b)

Fig. 1. Transversal slices of rigidly registered (a) CT and (b) MR acquisitions of the
head

the images that will show only the common image features and drop additional
details prominent in only one of the modalities.

Figure 1 depicts two corresponding transversal slices from rigidly registered
3D volumes of 512 × 512 × 50 voxels of size 0.39 × 0.39 × 0.6 mm3. Obvious dif-
ferences can be noticed not only in the intensities of most of the structures but
also in the visibility of details of the tissues. The mapping between the intensities
is neither linear, nor invertible.

We propose to estimate the functional relationship between the intensities of
the different modalities by using the information contained in the joint histogram
of the coarsely registered images. In a first step the mean values and the variances
of all MR image (B) voxels are calculated, which correspond to the normalized
intensity values a = 0..255 in the CT image (A) using the joint histogram HAB:

μA(a) =
∑

b∈B HAB(a, b) · b∑
b∈B HAB(a, b)

(1)

σ2
A(a) =

∑
b∈B HAB(a, b) · (b − μA(a))2∑

b∈B HAB(a, b)
(2)

and likewise for the MR image voxels b = 0..255:

μB(b) =
∑

a∈A HAB(a, b) ·a∑
a∈A HAB(a, b)

(3)

σ2
B(b) =

∑
a∈A HAB(a, b) · (a − μB(b))2∑

a∈A HAB(a, b)
. (4)

For each of the histogram bins of the CT and MR, a flag fa, fb and a counter
ca, cb is defined. The flag encodes whether an intensity value should be mapped
by the corresponding μ function or should be kept unchanged:

fa, fb =

⎧⎨⎩
1 map to the other modality
0 undefined in the joint histogram

−1 keep the value unchanged.
(5)
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The counters are increased by one, whenever an intensity from one modality
is mapped onto its bin. As it is our aim to suppress structures in a patch which
are not visible in the other modality, the flags select intensities according to the
image with smaller variance. The counters are also updated according to this
decision:

∀a,

{
if σA(a) < σB(μA(a)) → fa = 1, inc. counter cμA(a) = cμA(a) + 1
if σA(a) > σB(μA(a)) → fa = −1, inc. counter ca = ca + 1 (6)

and likewise for the MR image:

∀b,

{
if σB(b) < σA(μB(b)) → fb = 1, inc. counter cμB(b) = cμB(b) + 1
if σB(b) > σA(μB(b)) → fb = −1, inc. counter cb = cb + 1.

(7)

As can be seen in the schematic joint histogram in Fig. 2(a) three different
regions can be distinguished according their variance. For the regions where
fa > fb and fa < fb the mapping direction is unambiguous and indicated with
an arrow. In Fig. 2(b) the same regions are labeled according to the flag notation.
If σA ≈ σB no clear decision can be made. For the intensities in this ambiguous
region (see Fig. 2(c)) it is very likely that the value bl will be mapped to ai and
ai which in turn is associated with bk. Accordingly, the mapping function νA(a)
for A can be written as:

∀a = 0..255, b = νA(a) =

⎧⎨⎩
if fa > fμA(a) → μA(a)
if fa < fμA(a) → a
if fa = fμA(a) → ambiguity.

(8)

B

A

B

A

B

A
(b) (c)(a)

σB > σA

σA ≈ σB

σA > σB

ai aj

bl

bk
fa = fb

ai

bk
bl

fa > fb

fb > fa

Fig. 2. Schematic joint histogram with (a) three regions defined by their variances,
(b) the three regions labeled with the flag notation, and (c) illustration of ambiguities

Two different ambiguous cases can be distinguished: (1) fa = fμA(a) = 1, i.e.
the intensities in both modalities are to be changed and (2) fa = fμA(a) = −1
i.e. both of them should be kept. The mapping counters ca, cμA(a) are used to
resolve such situations:

∀fa = fμA(a), b = νA(a) =
{

if ca > cμA(a) → a
if ca < cμA(a) → μA(a). (9)
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Corresponding formulas for Eq. 8/9 are used for νB(b). The ambiguities have
to be resolved iteratively until no further changes in the resulting mappings are
detected. Figure 3 and 4 show examples of CT/MR mappings using the proposed
method.

3 Results

Two representative examples were chosen to demonstrate the advantages of inte-
grating this intensity mapping procedure into the hierarchical registration, such
that CC can be used as the similarity measure instead of MI after a certain
level of the hierarchy has been reached. Two regions of interest have been se-
lected for illustration, marked with white squares on Fig. 1. All patches are of
64 × 64 × 17 voxels, equivalent to the 4th level of the subdivision.

The first experiment was performed with an image pair (upper white squares in
Fig. 1) containing rich structural details. Figure 3 shows the original patches, their
intensity mapped versions and the behavior of MI (on the original) and CC (on the
intensity mapped images) for horizontal displacements up to ±10 pixels. It can
be seen that for regions having sufficient structural information, both similarity
measures are sufficiently stable for finding the correct registration position.
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Fig. 3. (a,b) Initial patches showing rich structural details and (d,e) their intensity
mapped versions. (c) The response of MI on the original and (f) CC on the intensity
mapped images to horizontal translations.

A different region of interest (lower white squares in Fig. 1) has been used for
the same experiment. While the corresponding CT patch is almost uniform, the
MR image shows significant contrast within the brain tissue covered. This is a
classical case in which MI generally fails to find the correct registration position,
see [9]. Figure 4 shows the original and intensity mapped patches together with
the comparison between the MI and the CC responses to horizontal translations.
While CC remains robust for this region, too, MI shows highly unreliable behav-
ior. Note, that our hierarchical strategy partitions only the floating image and
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Fig. 4. (a,b) Patches with major differences of tissue contrast in CT and MR. (d,e) In-
tensity mapped versions of the images. (c) The response of MI on the original and
(f) CC on the intensity mapped images to horizontal translations.
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Fig. 5. (a) CT and (b) MR sample slice of the spine volume used for the validation
tests (c) schematic of the artificial deformation field

the local similarity measure for a partitioned sub-image is calculated from its
volume of overlap with the entire reference image. Therefore, only the sub-images
on the border of the volume are effected by an eventual change in the overlap-
ping volume. According to our experience, this leads seldom to misregistrations
which can fully be corrected by the subsequent regularization step.

In order to quantitatively analyze the advantages of integrating the proposed
intensity mapping strategy into the hierarchical non-rigid registration procedure,
an artificial registration scenario which consists of recovering a predefined de-
formation field was used. The underlying pre-registered CT/MR datasets of the
spine had a size of 512 × 512 × 60 voxels of dimension 0.47 × 0.47 × 1.25 mm3,
see Fig. 5(a,b). The CT dataset was split in 4 equally sized blocks of size
256 × 256 × 60 voxels. Two of these blocks were rigidly rotated as shown in
Fig. 5(c). The deformed volume was then interpolated using thin plate splines
(TPS) and partial volumes. The MR volume was then registered using (1) MI
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Table 1. Registration error calculated for the entire volume as well as for the local
region marked with a white square in Fig. 5(a,b)

Similarity Measure
Results Direction MI MI+CC Improvement
entire in plane (xy) 0.5157 ± 0.4137 mm 0.4795 ± 0.4617 mm 7.02%
volume out of plane (z) 0.4262 ± 0.5615 mm 0.3990 ± 0.4423 mm 6.38%

overall (xyz) 0.7380 ± 0.6240 mm 0.6790 ± 0.5804 mm 7.99%
local in plane (xy) 0.3641 ± 0.2205 mm 0.2377 ± 0.1782 mm 34.71%
region out of plane (z) 0.2768 ± 0.2743 mm 0.2379 ± 0.2085 mm 14.05%

overall (xyz) 0.4987 ± 0.2904 mm 0.3653 ± 0.2342 mm 26.74%

during the entire hierarchical registration procedure and (2) when switching MI
to CC at the 4th hierarchical level. The recovered deformation fields were then
compared to the known artificial deformation field.

Table 1 summarizes the average and standard deviation of the registration
error for the entire dataset and for the region marked with a white square in
Fig. 5(a,b). As the gain of switching from MI to CC only applies to a small
number of sub-images, the average registration error over the entire volume
improves only slightly. However, the registration error improved up to 34.71%
for the selected region (80 × 120 × 40 voxels) where MI generally tends to fail.

4 Conclusions

As has been previously discussed in the literature, MI shows unsatisfactory be-
havior for the matching of structureless or small image patches due to the lack
of statistical consistency caused by the small number of available image samples.
CC proved to be more robust, but it can not be directly used for cases, where
the intensity relation between the modalities is non-linear. The mapping strategy
presented by this paper enables the combination of both similarity measures for
multi-modal registrationprocedures relying on a hierarchical subdivision strategy.
At the first levels of the hierarchy, where the partitions are still relatively large,
MI can be used to coarsely register the corresponding patches. After this stage,
the images can be transformed to a pseudo-modality using the presented mapping
technique and the similarity measure can be switched to the more robust CC.

With the proposed hybrid approach that uses MI for the first levels and CC for
the last few levels, two important properties of these similarity measures can be
seamlessly combined in a unique manner, namely the multi-modal capabilities of
MI with the robustness of CC without increasing the computational complexity
of the underlying algorithm.
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Abstract. We present a new objective function for the registration of
multi-modal medical images. Our novel similarity metric incorporates
both knowledge about the current observations and information gained
from previous registration results and combines the relative influence of
these two types of information in a principled way. We show that in
the absence of prior information, the method reduces approximately to
the popular entropy minimization approach of registration and we pro-
vide a theoretical comparison of incorporating prior information in our
and other currently existing methods. We also demonstrate experimental
results on real images.

1 Problem Definition

Multi-modal intensity-based registration of medical images can be a challeng-
ing task due to great differences in image quality and resolution of the input
data sets. Therefore, besides using the intensity values associated with the cur-
rent observations, there have been attempts using certain statistics established
at the correct alignment of previous observations in order to increase the ro-
bustness of the algorithms [4, 1]. One such example is applying the joint prob-
ability of previously registered images as a model for the new set of images.
That approach requires one to assume that we have access to the joint distribu-
tions of previously registered images and also that the resulting joint distribu-
tion model accurately captures the statistical properties of other unseen image
pairs at registration. The accuracy of such methods, however, is biased by the
quality of the model. This motivates an approach which is both model-reliant
and model-free in order to guarantee both robustness and high alignment ac-
curacy. Such ideas have been recently formulated by Chung1 and Guetter [3].
Chung et al. have proposed the sequential utilization of a Kullback Leibler (KL)-
divergence and a Mutual Information (MI) term, while Guetter et al. incorpo-
rate the same two metrics into a simultaneous optimization framework. In both
methods there is an arbitrary parameter that decides how to balance the two
influences.

1 Private communications with Prof A. Chung (The Hong Kong University of Science
and Technology).
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2 Proposed Method

We formulate the registration task by balancing the contributions of data and
prior terms in a principled way. We follow a Bayesian framework and introduce a
prior on joint probability models reflecting our confidence in the quality of these
statistics learned from previously registered image pairs.

We define a normalized likelihood-based objective function on input data sets
u and v by optimizing over both transformation (T ) and the parameters of the
unknown joint probability model (Θ):

arg max
T,Θ

F(T, Θ) = arg max
T,Θ

1
N

log p([u, vT ]; T, Θ). (1)

If we assume that Θ encodes information about intensity value joint occurrences
as parameters of an unknown multinomial model in N independent trials and
let the random vector Z = {Z1, ..., Zg} indicate how many times each event
(joint occurrence of corresponding intensity values) occurs, then

∑g
i=1 Zi = N ,

where N is the size of the overlapping region of the observed images. Also, the
probability distribution of the random vector Z ∼ Multinom(N; Θ) is given by

P (Z1 = z1, ..., Zg = zg) =
N !∏g
i=1 zi!

g∏
i=1

θzi

i . (2)

According to this interpretation, Z summarizes the event space of the joint inten-
sity samples [u, vT ] and N indicates the observed sample size. Such a representa-
tion is convenient as the θi parameters naturally correspond to the parameters of
the widely used histogram encoding of the joint statistics of images. Given g num-
ber of bins, the normalized contents of the histogram bins are Θ = {θ1, ..., θg}
with θi ≥ 0 and

∑g
i=1 θi = 1. Additionally, given the multinomial representa-

tion, prior information about the bin contents can be expressed by using Dirichlet
distribution, the conjugate prior to a multinomial distribution.

Dirichlet distributions are multi-parameter generalizations of the Beta distri-
bution. They define a distribution over distributions, thus the result of sampling
a Dirichlet is a multinomial distribution in some discrete space. In the case where
Θ = {θ1, ..., θg} represents a probability distribution on the discrete space, the
Dirichlet distribution over Θ is often written as

Dirichlet(Θ; w) =
1

Z(w)

g∏
i=1

θ
(wi−1)
i (3)

where w = {w1, w2, ..., wg} are the Dirichlet parameters and ∀wi > 0. The
normalization term is defined as

Z(w) =
∏g

i=1 Γ (wi)
Γ (
∑g

i=1 wi)
, (4)

where
Γ (wi) =

∫ ∞

0
twi−1e−tdt. (5)
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We, however, use another encoding of the distribution. We assign wi = αmi,
where α > 0 and

∑g
i=1 mi = 1. Accordingly,

Dirichlet(Θ; α, M) =
1

Z(αM)

g∏
i=1

θ
(αmi−1)
i =

Γ (α)∏g
i=1 Γ (αmi)

g∏
i=1

θ
(αmi−1)
i . (6)

This representation is more intuitive, as we can interpret M ={m1, m2, ..., mg}
as a set of base measures which, it turns out, are also the mean value of Θ, and
α is a precision parameter showing how concentrated the distribution around M
is. We can also think of α as the number of pseudo measurements observed to
obtain M . The higher the former number is, the greater our confidence becomes
in the values of M . When using a Dirichlet distribution, the expected value and
the variance of the Θ parameters can be obtained in closed form [2]. They are

E(θi) = mi and Var(θi) =
mi(1 − mi)
α(α + 1)

. (7)

Later we also need to compute the logarithm of this distribution which is

log [Dirichlet(Θ; α, M)] = log

[
1

Z(αM)

g∏
i=1

θ
(αmi−1)
i

]
(8)

= log
g∏

i=1

θ
(αmi−1)
i − log [Z(αM)] (9)

=
g∑

i=1

log(θ(αmi−1)
i ) − log [Z(αM)] (10)

=
g∑

i=1

(αmi − 1) log θi − log [Z(αM)] . (11)

Thus incorporating the prior model we can write a new objective function as:

arg max
T,Θ

F(T, Θ) =

= argmax
T,Θ

1
N

log[p([u, vT ]; T |Θ)p(Θ)] (12)

= argmax
T,Θ

1
N

[log p([u, vT ]; T |Θ) + log Dirichlet(Θ; αM)] (13)

= argmax
T,Θ

1
N

[
log p([u, vT ]; T |Θ) +

g∑
i=1

(αmi − 1) log θi − log Z(αM)

]
.(14)

We may choose to order the optimization of T and Θ and require that only
the optimal transformation T be returned. We denote the distribution parame-
ters that maximize the expression in brackets to be optimized as Θ̂T . This, in
fact, corresponds to the MAP parameter estimate of the multinomial parameters
given the image data and some value of T. If we indicate the KL divergence of
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distributions as D and the Shannon entropy measure as H , the aligning trans-
formation TDIR can be expressed as [12]:

TDIR = argmax
T

[
1
N

N∑
i=1

log p(u(xi), v(T (xi)); T |Θ̂T ) +
1
N

g∑
i=1

(αmi − 1) log θ̂Ti

]
(15)

≈ argmin
T

[
D(pT ||p̂T,Θ̂T

) + H(pT ) − 1
N

g∑
i=1

(αmi − 1) log θ̂Ti

]
, (16)

where pT is the true probability distribution of the input observations given
parameter T and p̂T,Θ̂T

is the estimated model joint distribution parameterized
by T and Θ̂T . The newly proposed objective function can be interpreted as the
composition of a data- and a prior-related term. The former expresses discrep-
ancies between the true source distribution and its estimated value, while the
latter incorporates knowledge from previous correct alignments. As it might not
be intuitive how that information influences the alignment criterion, in the fol-
lowing, we further manipulate the third term in Eq.(16). The prior-related term
in Eq.(16) can be expanded into a sum of two terms:

− 1
N

g∑
i=1

(αmi − 1) log θ̂Ti = − α

N

g∑
i=1

mi log θ̂Ti +
1
N

g∑
i=1

log θ̂Ti . (17)

If we assume that both the base parameters of the Dirichlet distribution M =
{m1, ..., mg} and the Θ = {θ1, ..., θg} parameters represent normalized bin con-
tents of histogram encodings of categorical probability distributions PM and
PΘ̂T

, respectively, and furthermore, if we denote a uniform categorical probabil-
ity distribution function by PU where each of the g number of possible outcomes
equals

(
1
g

)
, then we can approximate the prior-related term through:

− α

N

g∑
i=1

mi log θ̂Ti +
1
N

g∑
i=1

log θ̂Ti =

=
α

N

[
D(PM‖PΘ̂T

) + H(PM )
]

+
1
N

g∑
i=1

log θ̂Ti (18)

=
α

N

[
D(PM‖PΘ̂T

) + H(PM )
]

− g

N

[
D(PU‖PΘ̂T

) + H(PU )
]
. (19)

After dropping terms that are constant over the optimization, the objective
function from Eq.(16) can then be expressed as

TDIR ≈ argmin
T

[
D(pT ‖p̂T,Θ̂T

) + H(pT ) +
α

N
D(PM‖PΘ̂T

) − g

N
D(PU‖PΘ̂T

)
]
.

(20)

Therefore, our new registration objective can be interpreted as the weighted
sum of four information theoretic terms. We refer to them as the data terms,
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the prior term and the estimation term. The first two terms, the data-related
terms, indicate how well the observations fit the model given optimal distri-
bution parameters Θ̂T . The third term measures the KL-divergence between
two categorical distributions over the parameters describing the pseudo and the
current observations and the fourth term evaluates the KL-divergence between
two other categorical distributions, the uniform and the one characterizing the
parameters of the current observations. Note, as the uniform distribution has
the highest entropy among all, maximizing the KL-divergence from it is very
similar to minimizing the entropy of the distribution. As N is fixed and given
by the number of the observed input intensity pairs, the weighting proportion
depends solely on α, the precision parameter of the Dirichlet distribution. It is
this value that determines how much weight is assigned to the prior term or in
other words it ensures that the mode of the prior is centered on the previously
observed statistics. That arrangement is intuitively reasonable: when α is high,
the Dirichlet base counts are considered to originate from a large pool of previ-
ously observed, correctly aligned data sets and thus we have high confidence in
the prior; when α is low, prior observations of correct alignment are restricted to
a smaller number of data sets thus the prior is trusted to a lesser extent. Inter-
estingly, most often when one relies on fixed model densities, it is exactly this α
value that is missing, i.e. there is no notion about how many prior registered data
sets have been observed in order to construct the known model distribution. We
also point out that by discarding the prior information and assuming that the
distribution estimation process is sufficiently accurate, the objective function is
approximately equivalent to the joint entropy registration criterion.

3 Preliminary Probing Experiments

In order to experimentally verify the previously claimed advantages of our novel
registration algorithm, we designed a set of probing experiments to describe the
capture range and accuracy of a set of objective functions. A probing experiment
corresponds to the detailed characterization of an objective function with respect
to certain transformation parameters. It helps to describe the capture range (the
interval over which the objective function does not contain any local optima
besides the solution) and accuracy of the objective function.

We compared the behavior of our method to that of three others: joint entropy
[9], negative mutual information [5, 11] and KL-divergence [1]. The first two
of these methods only consider data information and the third one relies on
previous registration results. Ours incorporates both. It thus benefits from the
current observations allowing for a well-distinguishable local extrema at correct
alignment and also from previous observations increasing the capture range of
the algorithm.

The input data sets were 2D acquisitions of a Magnetic Resonance Imaging
(MRI) and an echoplanar MRI (EPI) image (see Fig. 1). Historically, the reg-
istration of these two modalities has been very challenging because of the low
contrast information in the latter [8]. We carried out the probing experiments in
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(a) (b)

Fig. 1. 2D slices of a corresponding (a) MRI and (b) EPI data set pair

the y- (or vertical) direction. This is the parameter along which a strong local
optimum occurs in the case of all the previously introduced objective functions.
In order to avoid any biases towards the zero solution, we offset the input EPI
image by 15 mm along the probing direction. Thus the local optimum is expected
to be located at this offset position – and not at zero – on the probing curves.
The objective functions were all evaluated in the offset interval of [-100, 100]
mm given 1 mm step sizes.

The probing experiment results are displayed in Fig. 2. In the case of joint en-
tropy (JE), we find a close and precise local optimum corresponding to the offset
solution location. However, the capture range is not particularly wide; beyond
a narrow range of offset, several local optima occur. In the case of negative MI,
the capture range is just a bit wider. The KL objective function, as expected,
increases the capture range. Nevertheless, its accuracy in locating the offset op-
timal solution is not sufficient. In fact, around the expected local minimum the
curve of the objective function is flat thus preventing the precise localization of

(a) Probing results (b) Close-up of the probing results

Fig. 2. Probing results related to four different objective functions: joint entropy, MI,
KL, our method (top-to-bottom, left-to-right)
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the solution. The probing curve of our novel similarity metric demonstrates both
large capture range and great accuracy. Thus relying on both previous registra-
tion results and the current observations, this new metric is able to eliminate
the undesired local minimum solutions.

4 Connecting the Dirichlet Encoding to Other Prior
Models

Finally, we diverge slightly from our main analysis. We draw similarities between
the Dirichlet and other encodings of prior information on distribution parame-
ters. Such an analysis facilitates a better understanding of the advantages of the
Dirichlet encoding and it creates a tight link with other methods.

We start our analysis by showing that the maximum likelihood solution for
the multinomial parameters Θ is equivalent to the histogrammed version of the
observed intensity pairs drawn from the corresponding input images. Then, us-
ing these results, we demonstrate that the MAP estimate of the multinomial
parameters (with a Dirichlet prior on them) is the histogram of the pooled data,
which is the combination of the currently observed samples and the hypothetical
prior counts encoded by the Dirichlet distribution.

4.1 ML Solution for Multinomial Parameters

In this section, we rely on the relationship that the joint distribution of the
observed samples can be obtained by joint histogramming and the normalized
histogram bin contents can be related to the parameters of a multinomial dis-
tribution over the random vector Z. Then the probability distribution of the
random vector Z ∼ Multinom(N; Θ) is given by

P (Z1 = z1, ..., Zg = zg) =
N !∏g
i=1 zi!

g∏
i=1

θzi

i . (21)

Again, according to this interpretation, Z summarizes the event space of the
joint intensity samples [u, vT ] and N indicates the observed sample size. If we
want to then optimize the log version of this expression with respect to the Θ
parameter, we write

Θ̂ = argmax
Θ

log
N !∏g
i=1 zi!

g∏
i=1

θzi

i (22)

= argmax
Θ

g∑
i=1

zi log θi. (23)

In other words, when searching for the maximum likelihood parameters of
multinomial parameters, we need to compute the mode of the expression in Eq.
(23) over all θi’s. This formulation is very similar to that of the logarithm of the
Dirichlet distribution which we formulated in Eq.(11). From probability theory
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we know that the mode of that expression is taken at
[

αmi−1
α−g

]
. Thus if we define

(αmi ≡ zi + 1), the mode of Eq. (23) is found at

θ̂i =
αmi − 1
α − g

=
(zi + 1) − 1∑g

i=1 zi
=

zi∑g
i=1 zi

. (24)

Accordingly, the optimal θi parameter – in the maximum likelihood sense – is the
one that can be computed by the number of corresponding counts normalized by
the total number of counts. That is exactly the approximation that is utilized by
the popular histogramming approach. Therefore, we can state that the maximum
likelihood solution for the multinomial parameters is achieved by histogramming.

4.2 MAP Solution for Multinomial Parameters with a Dirichlet
Prior

In this section we return to the MAP problem formulation that originated our
analysis. Here, in order to find the optimal set of distribution parameters Θ̂ with
a prior assigned to them, we have

Θ̂ = arg max
Θ

g∑
i=1

zi log θi +
g∑

i=1

(αmi − 1) log θi (25)

= arg max
Θ

g∑
i=1

(zi + αmi − 1) log θi (26)

If we now define α′m′
i ≡ zi + αmi, then the above simplifies to

θ̂i =
α′m′

i − 1∑g
i=1(α′m′

i) − k
=

zi + αi − 1∑g
i=1(αmi) − k

=
zi + ci∑g
i=1 zi + ci

. (27)

where ci = (αmi − 1) are counting parameters related to the pseudo counts
of the Dirichlet distribution. That is to say, the optimal θi parameter – in the
maximum a posteriori sense – is the one that can be computed by the sum of
the corresponding observed and pseudo counts normalized by the total number
of observed and pseudo counts. In other words, in order to compute the optimal
θi parameter, we need to pool together the actually observed and the pseudo
counts and do histogramming on this merged collection of data samples.

Interestingly enough, this formulation forms a close relationship with another
type of entropy-based registration algorithm. Sabuncu et al. introduced a reg-
istration technique based upon minimizing Renyi entropy, where the entropy
measure is computed via a non-plug-in entropy estimator [7, 6]. This estimator
is based upon constructing the EMST (Euclidean Minimum Spanning Tree) and
using the edge length in that tree to approximate the entropy. According to
their formulation, prior information is introduced into the framework by pooling
together corresponding samples from the aligned (prior distribution model) and
from the unaligned (to be registered) cases. Throughout the optimization, the
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model observations remain fixed and act as anchor points to bring the other sam-
ples into a more likely configuration. The reason why such an arrangement would
provide a favorable solution has not been theoretically justified. Our formulation
gives a proof for why such a method strives for the optimal solution.

Very recently, another account of relying on pooling of prior and current
observations been published [10]. The authors use this technique to solve an
MRI-CT multi-modal registration task.
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Abstract. Registration of two images requires interpolation to generate a new 
image on a transformed grid, and the optimal transformation that maps an im-
age to the other is found by maximizing a similarity measure. Similarity sur-
faces are subject to scalloping artifacts due to interpolation that give local 
maxima, and, in some cases, erroneous global maxima. We propose a new lin-
ear filter that is applied to input images and which removes scalloping artifacts 
from cross-correlation and mutual-information similarity surfaces. The compu-
tational burden is sufficiently low that it can be used in every iteration of an 
optimization process. In addition, this new filter generates image data with con-
stant variance after linear interpolation, making measurements of signal change 
more reliable. Following filtering of MR images, similarity surfaces are 
smoothed with removal of local maxima and biased global maxima.  

1   Introduction 

In intensity based registration, one finds the transformation that maximizes a similarity 
measure which quantifies the alignment of two data sets (see [1] for a recent survey). 
Typical examples of similarity measures are mutual information and cross-correlation 
[2]. Significant scalloping artifacts can be observed in the cross-correlation and mutual-
information surfaces. Two major problems arise from these perturbations: local maxima 
may hinder any optimization algorithm, and global maximum may happen not for the 
optimal transformation parameters.  

Some studies have determined the origins of perturbations. During registration, 
transformation of the floating image to the reference image requires an interpolation 
step and often linear interpolation is used because it is one the simplest and one of the 
fastest.  Pluim et al. [3], showed that interpolation is the prevalent cause for the 
scalloping artifacts. They showed that it happens even in partial volume interpolation 
method introduced by Maes et al [4], and they concluded that sub-voxel accuracy 
as a result is unreasonable. Further analysis by Ji et al. [5] showed that sampling in-
troduced also artifacts. More recently Rohde et al. [6;7] showed analytically that the 
scalloping artifacts are mostly due to uneven filtering by the interpolation process.  
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Several techniques have been proposed to reduce these artifacts. For example, Tsao 
[8] showed that they can be reduced by jittering the transformation parameters for 
each voxels before nearest neighbor interpolation, and by histogram blurring for the 
mutual information computation. Rohde et al. [6;7] found that sinc interpolation re-
duced scalloping. Over-sampling of the image and reduced binning of the joint histo-
gram can also be beneficial [5]. 

We confirm in this communication that these scalloping artifacts are due to interpola-
tion, and we propose a simple linear filter that completely removes them, smoothing the 
cross-correlation and mutual-information surfaces. In the next section we describe 
the method. In the following section we show experimental results on MR images. In 
the last section, we discuss the impact of this development on image registration.   

2   Filter Design 

Consider a discrete signal sBjB defined on a regularly spaced lattice j∈{1,...,N}. We 
would like to obtain the value of sBiB at a different location also defined over a regularly 
spaced lattice. Any arbitrary location can be written as a shift over an integer number 
of lattice grid plus a real number for in-between the lattice grid. We thus consider a 
shift by α⊂[0,1[, with i=j+α, and j ∈ . After linear interpolation, the new signal x BiB 

can be written: 

 ( ) 11i j jx s sα α += − +  (1) 

This equation can be interpreted as an adaptative linear filter: for α=0 or 1, a sim-
ple shift of the lattice is needed, whereas when α=0.5 for example, it corresponds to 
an averaging filter over two points. More complicated filters such as cubic or spline 
interpolation suffer from the same problem albeit to a lower extent [7]. 

Since linear interpolation corresponds to a filter that depends on the interpolation 
location, we suggest designing another filter that will also depend on the interpolation 
location, but with the opposite behavior. Such a filter, performed after linear interpo-
lation, would result to a signal with constant variance. We use this criterion and  
design a constant variance filter for linear interpolation (cv-lin). To minimize the 
computation burden we chose the simplest non-causal filter: 

 1 1i i i iy ax bx ax− += + +  (2) 

where x’s are samples on the new interpolated grid and y’s are values after application 
of cv-lin. We impose the normalization constraint  

 
1

2 1 or 
2

b
a b a

−+ = =  (3) 

We specify a and b so that 2 2
y sσ λσ= with 2

yσ and 2
sσ the variance of y and s re-

spectively and λ +∈ , a user-defined constant. We derived an equation for the vari-

ance following interpolation and solve to obtain a second-order equation for b with 
solution below (derivation will be published elsewhere): 
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The denominator exists for every α⊂[0,1], and the square root is positive for 
λ>1/3. The value λ=1/3 corresponds to the minimal variance achievable with a 
three-point averaging filter; i.e. [1 1 1]/3. Given the value of b, one can compute a, 
and specify the filter coefficients in �(2) �. With λ=0.5, the signal is left unchanged 
when it is the most filtered by linear interpolation (i.e. in the middle of grid points). 
By choosing λ>0.5, cv-lin becomes a high-pass filter where the variance has been 
attenuated by linear interpolation more than 0.5; this might find application when 
image sharpness is desired. Extension to multidimensional data is straightforward 
because each dimension can be filtered independently. There will be as many α’s as 
dimensions. 

Note that for translation only α is the same for all pixels (one per dimension), but 
when rotation is present and for non-rigid body transformation in general, α will be 
different for each pixel, and therefore our proposed filter (Eq. 4) needs to be com-
puted for each pixel (different coefficients a and b). The use of a lookup table to im-
plement Eq. 4 improves significantly the computational cost. 

3   Method 

In order to test our filter we used multiple MR images from different anatomical 
parts. We show here typical results only on brain images because of space restric-
tion. Since we would like to analyze the effects of interpolation, we cannot misreg-
ister an image because it would require an interpolation step. Instead we used the 
original image as the reference image and we interpolated the same image with 
different transformation parameters that included translation (horizontal and verti-
cal) and rotation around the optimal parameters (all zero in this case). Cross-
correlation and mutual-information were computed using standard equations [1;9]. 
Parameters were varied with a resolution of 0.03 pixels for translation and 0.03 
degrees for rotation to assess sub-pixel perturbation. Similarity surfaces were plot-
ted in three dimensions versus two parameters while one parameter was kept con-
stant to its optimal value (zero). Similarity measures were also plotted versus each 
parameter individually while keeping the other two constant to their optimal values 
(zero). 

Two separate cases were considered. First, raw images were used without any pre-
processing. Second, images were filtered prior to the experiments with anisotropic 
diffusion filtering [10], and two separate noise realizations were added to each image 
to generate two different images. Noise standard deviation is expressed as a percent-
age of the dynamic range of each image. 
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4   Results 

In Fig. 1, we show similarity curves for translation and rotation, when the floating im-
age is an exact copy of the reference. Both cross-correlation and mutual-information 
show the characteristic scalloping artifact, which is removed with application of cv-lin. 
In this case, the global maximum always occurs at the correct location. 

 

Fig. 1. Mutual information and cross-correlation as a function of translation and rotation. In this 
experiment the same image was used and misregistered to itself. 

In Fig. 2 and 3, we used images having different noise realizations. In this case, 
noise realizations were added to a version of the original image filtered to reduce 
noise. Results are significantly different from those obtained in the previous experi-
ment.  Prior to cv-lin filtering, the global maximum does not occur at the true loca-
tions, and the scalloping artifacts are larger. Following application of cv-lin, the sur-
face is smoothed and the erroneous biases of the global maxima are removed. 

 

Fig. 2. We redid the same experiment as in Fig 1, but the images were first filtered and different 
noise realizations were added to yield two different images. Mutual information is shown for this 
2% noise case. Note the global bias and local maxima have been canceled with cv-lin filtering. 
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Fig. 3. As in Fig 2, the original image was first filtered and 4% noise was added. Cross-
correlation is shown here as a function of rotation and translation.  

 

Fig. 4. Cross-correlation surfaces as a function of translation along x- and y-direction. The left 
panel shows the original surface with local maxima and global bias. In the right panel after cv-
lin filtering the similarity surface is much smoother without noticeable interpolation-induced 
artifacts. Noise was 5%. 

In Fig. 4 we show the cross-correlation surface as a function of translation in both 
directions to show how the proposed method efficiently removes the interpolation-
induced artifacts. 

5   Discussion 

When a digital data set needs to be sampled at any arbitrary location, interpolation act as 
a spatially variable filter: when a new grid point matches an original one, the data is just 
shifted but otherwise unchanged; when a new grid point falls in between two original 
ones, the data is averaged. The interpolated data is thus unevenly filtered. As a conse-
quence data features can be variably smoothed and the variance of the noise becomes 
variable across the data set. The effects on similarity measured commonly used in  
registration methods such as cross-correlation and mutual information are scalloping 
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artifacts creating local maxima and global bias. To address those issues we computed a 
simple filter that balances the effect of linear interpolation such that the data are evenly 
filtered across the data set.  

The global bias of registration is reduced. If the optimal transformation happens to 
shift the new grid mostly in between the grid points of the original data, the interpo-
lated data would be the most filtered. This results in sharpening of the histogram and 
the joint histogram increasing the mutual information measure. Compared to a 
slightly different transformation that would move the new grid closer to the original 
grid, almost no filtering would happen and the histograms would be unchanged. In 
this case the increase of MI due to the filtering could be higher than the increase of 
MI because the two data sets are better registered, and the global maximum of the MI 
would not happen for the optimal parameters. Similar explanation can be put forth for 
cross-correlation. Because cv-lin filters the data homogeneously such problem is 
much reduced as shown in the results section.  

Local maxima are removed. The previous argument can be made again to explain 
the existence of local maxima in the similarity measures. When the transformation 
shifts the new grid in between the original grid, an increase in cross-correlation and 
the mutual information occurs. These local maxima can obviously trap the most so-
phisticated optimization algorithm. Other methods have been proposed to alleviate 
this problem as reviewed in the introduction. Some of them rely on filtering of all the 
data to minimize the artifacts with the risk to filter important data features that could 
be relevant for the registration. We think that cv-lin better addresses this problem 
because it filters the data only where it is needed. The partial-volume method intro-
duced by Maes et al. [4] suffers also from interpolation artifacts as noted in [5] and 
[3], further investigation is needed to explore the benefit of cv-lin for this method. 

Smoother similarity surfaces favorably impact registration methods. Sub-voxel accu-
racy is much improved in our preliminary tests (not shown) thanks to the removal of 
global bias. Convergence of optimization techniques is also improved because local 
maxima are reduced, thereby reducing cases where the optimization gets trapped, and 
also because a smoother surface increases the accuracy and robustness of derivatives 
and Hessian estimation. Since we used a simple linear filter, computation burden is 
limited and the new cv-lin filter can be used within existing registration algorithm with-
out much increase in computation time. We are currently working on optimizing the 
implementation.   

In conclusion, we have proposed a method to remove scalloping artifacts in cross-
correlation and mutual-information. We designed a filter that produces constant vari-
ance in data that have been interpolated with linear interpolation. As a results global 
bias and local maxima are removed, which should improved registration methods 
based on the optimization of these similarity measures.  
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Abstract. One of the most challenging problems in modern neuroimag-
ing is detailed characterization of neurodegeneration. Quantifying spatial
and longitudinal atrophy patterns is an important component of this pro-
cess. These spatiotemporal signals will aid in discriminating between re-
lated diseases, such as frontotemporal dementia (FTD) and Alzheimer’s
disease (AD), which manifest themselves in the same at-risk popula-
tion. We evaluate a novel symmetric diffeomorphic image registration
method for automatically providing detailed anatomical measurement
over the aged and neurodegenerative brain. Our evaluation will compare
gold standard, human segmentation with our method’s atlas-based seg-
mentation of the cerebral cortex, cerebellum and the frontal lobe. The
new method compares favorably to an open-source, previously evaluated
implementation of Thirion’s Demons algorithm.

1 Introduction

Frontotemporal dementia (FTD) prevalence may be higher than previously
thought and may rival Alzheimer’s disease (AD) in individuals younger than
65 years [1]. Because FTD can be challenging to detect clinically, it is important
to identify an objective method to support a clinical diagnosis. MRI studies of
individual patients are difficult to interpret because of the wide range of accept-
able, age-related atrophy in an older cohort susceptible to dementia. This has
prompted MRI studies that look at both the rate and the anatomic distribution
of change [2, 3].

Manual, expert delineation of image structures enables in vivo quantification
of focal disease effects and serves as the basis for important studies of neurode-
generation [3]. Expert structural measurements from images also provide the
gold-standard of anatomical evaluation. The manual approach remains, however,
severely limited by the complexity of labeling 2563 or more voxels. Such labor is
both time consuming and expensive to support, while the number of individual
experts available for such tasks is limited. A third significant difficulty is the
problem of inter-rater variability which limits the reliability of manual labeling
[4]. While rarely available for large-scale data processing, an expert eye remains
valuable for limited labeling tasks that give a basis for algorithmic evaluation.

J.P.W. Pluim, B. Likar, and F.A. Gerritsen (Eds.): WBIR 2006, LNCS 4057, pp. 50–57, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Deformable image registration algorithms are capable of functioning effectively
in time-sensitive clinical applications [5] and high-throughput environments and
are used successfully for automated labeling and measurement research tasks. One
challenge is reliable performance on non-standard data, as in studies of potentially
severe neurodegenerative disorders. These types of images violate the basic as-
sumptions of small deformations and simple intensity relationships used in many
existing image registration methods.

Diffeomorphic image registration algorithms hold the promise of being able to
deal successfully with both small and large deformation problems. State of the
art methods also give full space-time optimizations, are symmetric with respect
to image inputs and allow probabilistic similarity measures [6]. We will evaluate
the performance of our symmetric diffeomorphic algorithm for high dimensional
normalization of elderly and neurodegenerative cortical anatomy. We compare
the method to the Demons algorithm which was shown to outperform other
methods in a careful evaluation of inter-subject brain registration [7].

2 Methods

Demons. Thirion’s Demons algorithm [8] is known to perform well in inter-
subject deformable image registration. The method uses an elastic regularizer
to solve an optical flow problem, where the “moving” image’s level sets are
brought into correspondence with those of a reference or “fixed” template image.
In practice, the algorithm computes an optical flow term which is added to
the total displacement (initially zero). The total displacement is then smoothed
with a Gaussian filter. The process repeats for a set number of iterations for
each resolution in a multi-resolution optimization scheme. The method is freely
available in the Insight ToolKit and has been optimized by the ITK community
(www.itk.org).

Dawant et al. used the Demons algorithm for segmenting the caudate nu-
cleus, the brain and the cerebellum for a morphometric comparison of normal
and chronic alcoholic individuals [9]. Their evaluation of the algorithm found rea-
sonable agreement between automated and manual labeling. They also showed
results on the automated labeling of hippocampus but did not evaluate perfor-
mance. Their comparison used the kappa statistic (overlap ratio),

S(R1, R2) =
2
(R1 ∩ R2)


(R1) + 
(R2)
, (1)

which measures both difference in size and location between two segmentations,
R1 and R2. The 
(R) operator counts the number of pixels in the region, R.
This sensitive measure varies in the range [0, 1] where values greater than 0.8 for
smaller structures and 0.9 for larger structures are considered good.

Symmetric Diffeomorphisms. A diffeomorphism is a smooth, one-to-one,
onto, invertible map. Shortest paths between elements in this space are termed
geodesic. Diffeomorphic methods were introduced into medical computer vision
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[10] for the purpose of providing a group theoretical, large deformation space-
time image registration framework. Current developments in large deformation
computational anatomy by Miller, Trouve and Younes extended the methods to
include photometric variation and to use Euler-Lagrange equations [11]. How-
ever, these methods do not formulate the transformation symmetrically. They
are only symmetric in theory and their implementation requires parallel compu-
tation [12].

Our current work extends the Lagrangian diffeomorphic registration technique
described in [13]. This new formulation has symmetry properties required for a
geodesic connecting two images, I and J , in the space of diffeomorphic transfor-
mations. This formulation accounts for the natural symmetry in the problem:
both images move along the shape (diffeomorphism) manifold. Symmetric diffeo-
morphisms guarantee two properties that are intrinsic to the notion of a geodesic
path: the path from I to J is the same as it is when computed from J to I, regard-
less of similarity metric or optimization parameters. Symmetry is required for
distance estimates and makes results independent of arbitrary decisions about
which image is “fixed” or “moving”.

Our method is also unique in that it guarantees sub-pixel accurate, invertible
transformations in the discrete domain. Driving forces may derive from landmark
similarity with mutual information or other probabilistic measures of appearance
relationships. This flexibility was inherited from our prior work [13]. Finally, the
method is efficient enough to use on single-processor machines and in processing
large datasets.

We define a diffeomorphism φ of domain Ω, generally, for transforming im-
age I into a new coordinate system by φI = I ◦ φ(x, t = 1). The parameters
of these transformations are time, t, a spatial coordinate, x, and a velocity
field, v(x) on Ω, which is a square-integrable, continuous vector field [14]. The
correspondence maps, φ, are gained by integrating the velocity fields in time,
φ(x, 1) =

∫ 1
0 v(φ(x, t))dt; the distance is then D(φ(x, 0), φ(x, 1)) =

∫ 1
0 ‖v‖Ldt,

where L defines the linear operator regularizing the velocity. The functional
norm, ‖ · ‖L, induces regularity on the velocity field via linear differential oper-
ator L = a∇2 + bId (a, b constants).

A basic fact of diffeomorphisms allows them to be decomposed into two parts,
φ1 and φ2. We exploit this fact to define a variational energy that explicitly
divides the image registration diffeomorphisms into two halves such that I and
J contribute equally to the path and deformation is divided between them. This
prior knowledge can be captured by including the constraint D(Id, φ1(x, 0.5)) =
D(Id, φ2(z, 0.5)) directly in the optimization algorithm. The result is a method
that finds correspondences with equal consideration of both images. Note that
below we will derive the equations assuming intensity difference as a similarity
measure, for simplicity. However, in actuality, we have a variety of statistical
image similarity measures (robust intensity difference, cross-correlation, mutual
information) at our disposal, as in [15], or employ user landmarks as in [13].

Define the image registration optimization time, t ∈ [0, 1] where t indexes
both φ1 and φ2, though in opposite directions. The similarity seeks φ1 such that
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Fig. 1. An illustration of one curve in the SyN geodesic path between images. The
image at far left and far right are the original images, I and J . The maps, φ1 and φ2

are of equivalent length and map I and J to the mean shape between the images. The
full path, φ and φ−1, are found by joining the paths φ1 and φ2.

φ1(x, 1)I = J . Recalling the basic definition of diffeomorphisms allows us to
write any geodesic through composing two parts. Then,

φ1(x, 1)I = J,

φ−1
2 (φ1(x, t), 1 − t)I = J,

φ2(φ−1
2 (φ1(x, t), 1 − t), 1 − t)I = φ2(z, 1 − t)J,

φ1(x, t)I = φ2(z, 1 − t)J, (2)

converts the similarity term from |φ1(x, 1)I −J | to |φ1(x, t)I −φ2(z, 1− t)J |2. A
visualization of these components of φ is in Figure 1. The forward and backward
optimization problem is then, solving to time t = 0.5,

Esym(I, J) = inf
φ1

inf
φ2

∫ 0.5

t=0
{ ‖v1‖2

L + ‖v2‖2
L +∫

Ω

|I(φ1(t)) − J(φ2(1 − t))|2dΩ}dt.

Subject to:
v1(0.5) = v2(0.5), ‖v1(t)‖2

L = ‖v2(1 − t)‖2
L

with each φi ∈ Diff0 the solution of:
dφi/dt = vi(φi(t)) with φi(0) = Id. (3)

Minimization with respect to φ1 and φ2, upholding the arc length constraint,
provides the symmetric normalization (SyN) solution and also solves a 2-mean
problem. Landmarks may also be included, as in the Lagrangian Push Forward
method [13], by dividing the similarity term, as done with the image match terms
above. This method is quite distinct from inverse consistent image registration
(ICIR) [16] in which a variational term is used to estimate consistency. Further-
more, SyN provides an inverse that is guaranteed to be everywhere sub-pixel
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accurate. This cannot be enforced by the ICIR formulation. Further details on
the numerical methods employed in optimizing this energy may be found in [13].

Implementation. The Demons algorithm is freely available in the standard
ITK distribution and has been quantitatively evaluated by the ITK community.
We have implemented SyN within our extended version of the ITK deformable
image registration framework, described in [17]. Therefore, we are in a position
to measure performance gains by varying only the transformation model, as we
use an identical similarity metric (optical flow). That is, for this study, SyN
will use the itkDemonsRegistrationFunction as implemented in ITK for image
forces. The only difference between the two methods that we compare is in
the transformation model: we are therefore investigating if using our symmetric
diffeomorphisms will enable better automated structure segmentations than the
elastic model used by Demons.

Dataset. We now study the volumetric differences between elderly and frototem-
poral dementia cortex, with particular focus on the frontal lobe. We will compare
the ability of two methods, SyN and Demons, to reproduce results gained from
an expert user’s labeling of our 20 image dataset. The frontal lobe is a major
focus in research on aging, memory loss and dementia.

Fig. 2. The original FTD image, in upper left, was initially aligned to the atlas, lower
left, via a rigid plus uniform scaling transformation. The subsequent Demons registra-
tion to the atlas, used for labeling, is in lower center. The corresponding grid deforma-
tion is in upper center. The SyN result is in lower right, while the corresponding grid
deformation is upper right. The Demons method does a reasonable normalization, but
leaves the ventricles and other smaller structures only partly normalized. The quadratic
elastic penalty prevents the remaining shape differences from being captured.



Symmetric Diffeomorphic Image Registration 55

We use a database of 20 T1 MRI images (0.85 x 0.85 x 1 mm, GE Horizon
Echospeed 1.5 T scanner) from 10 normal elderly and 10 frontotemporal demen-
tia patients. Each of the 20 images, along with the BrainWeb atlas, was manually
labeled with the protocol described in [4]. This protocol was shown to be highly
reproducible for both small and large structures via six-month intra-rater reli-
ability and inter-rater reliability measurements. Left hippocampus labeling, for
example, showed a 0.92 intra-rater overlap ratio (equation 1) and 0.83 average
for inter-rater overlap. As the hippocampus is relatively small, these values are
reasonable.

We compare the performance of the SyN algorithm to the Demons algorithm
for automatically labeling this dataset. Both Demons and SyN were used to au-
tomatically segment the whole brain, cerebellum and frontal lobes by registering
the labeled whole head MRI atlas to each individual whole head MRI. The atlas
labelings are then warped by the same transformation into the space of the pa-
tient image. We then compute overlap ratios between the manual and automatic
structural segmentations for each structure. An example comparison of the two
methods is in figure 2.

3 Results and Discussion

Both algorithms produced segmentation results above the minimum threshold
of 0.8 for all structures. A comparison between the average image produced after
normalization of all images by each method is in figure 3. SyN had an average
overlap ratio of 0.932 for cerebrum whereas the Demons value was 0.919; for
frontal lobe, SyN mean = 0.901 while Demons = 0.882; for cerebellum, SyN
mean = 0.883 while Demons = 0.861. We computed Student’s T-test to evaluate
whether SyN outperforms Demons for labeling these structures. SyN produces
statistically significant better (T > 2.5 ) results over the whole dataset for each
of these structures: frontal lobe (P < 0.03), cerebellum (P < 0.04) and cerebrum
(P < 0.016). The gap in performance on frontal lobe (P < 0.018) and cerebrum
(P < 0.003) increases when we focus only on the FTD results. This separation is

Fig. 3. A section of the template image is at left. The average of all elderly images
registered to the template by Syn and Demons are shown next, followed by the asso-
ciated error images (intensity difference between the average and the template). The
Demons average appears to have slightly larger ventricles and fewer sulci, as a result
of a general trend toward underestimating the deformation. This effect is exaggerated,
for Demons, when FTD data is included.
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caused by the presence of larger deformation in the FTD subjects some of which
may not be captured by Demons. Note that, in the past, similar evaluations have
shown Demons to outperform other methods [7].

Clinical Significance. We will now compare the ability of the Demons and
SyN results to estimate the difference in structural volume given by the manual
outlining. We achieve this by using the outlined frontal lobe on the atlas image to
mask each jacobian, Ji, as computed from each registration. The volume of the
frontal lobe for individual i is estimated from registration by

∑
(all x in the atlas

frontal lobe) Ji(x). We therefore have three distinct measurements of the elderly
and frontotemporal dementia frontal lobe: one from the expert labeling, one from
the Demons algorithm and one automated measure from our SyN method. Next,
we quantify the ability of the regularized, automated normalization methods to
approximate the results gained from the labor intensive manual approach.

FTD and aging both negatively impact memory. However, memory loss in
individuals with FTD is severe and accelerated. We expect this clinical presen-
tation to be reflected in cortical structure, particularly, with FTD, in the frontal
lobe. Here, we focus on lobar volume, as opposed to shape.

If we test for significant differences in size as given by manual labeling, we
find that elderly frontal lobes are larger with a significance of P < 0.0003, a
very strong result. The Demons method does NOT show significant results, with
P < 0.088. The SyN method, on the other hand, does show significant results
with P < 0.030, where all significance values are assessed with permutation
testing. Thus, we can see how an apparently small difference in performance
(as measured by overlap ratio) can have an impact on the study outcome. Note
that the Demons and SyN significance are both smaller than the manual results.
This is caused by segmentation bias towards the normal atlas (which has a
more regular labeling) and the fact that registration-based segmentations are
smoothed (Demons more than SyN), while the manual segmentations are not.
Note that Demons smooths the global transformation but does not restrict to
the space of diffeomorphisms. SyN explicitly smooths only the velocity field,
but restricts to diffeomorphisms, a space which can capture large deformation
differences as occurring in elderly and FTD data.

Conclusion. This preliminary comparison shows the distinct advantage of SyN
for segmenting elderly and neurodegenerative cerebrum, cerebellum and frontal
lobe. Note that, in addition to better performance, SyN provides a dense space-
time map and transformation inverses. The differences in performance are consis-
tent, statistically significant and have a major impact on study outcome. One can
extrapolate even larger differences between SyN and algorithms with lower di-
mensionality than either Demons or SyN. For this reason, along with the theoret-
ical advantages that translate into practical benefits, we promote diffeomorphic
algorithms in neuroimaging research, in particular when studying non-standard
datasets, such as FTD and AD.
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Abstract. Deformation based morphometry is used to detect differ-
ences in in-vivo Magnetic Resonance Image (MRI) of the mouse brain
obtained from two transgenic strains: TASTPM mice that over-express
proteins associated with Alzheimer’s disease, and wild-type mice. MRI
was carried out at four time points. We compare two different meth-
ods to detect group differences in the longitudinal and cross-sectional
data. Both methods are based on non-rigid registration of the images
to a mouse brain atlas. The whole brain volume measurements on 27
TASTPM and wild-type animals are reproducible to within 0.4% of whole
brain volume. The agreement between different methods for measuring
volumes in a serial study is shown. The ability to quantify changes in
growth between strains in whole brain, hippocampus and cerebral cortex
is demonstrated.

1 Introduction

Mouse models are used in many biomedical research areas to study issues rang-
ing from development to drug efficacy. The models are made popular by their
rapid life cycle in comparison to other animals as well as the wealth of genetic
information and the technology available to modify them. The human [1] and
mouse genome [2] project has made a large amount of data available on genes,
which makes our ability to understand disease processes a real possibility. MRI
allows the 3D morphology of anatomical structures to be examined in-vivo. Re-
cent efforts on the use of MRI to study anatomical differences between mouse
strains include [7], [8]. Chen et al [6] reported on significant differences of neu-
roanatomy in three different mouse strains. Kovacevic et al [4] reported on a
variational MRI atlas constructed from nine excised mice brains. Verma et al [5]
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reported that there were sharp contrast between tissue anisotropy changes in
the cortex and in major white-matter fibers during the first 80 post-natal days.

To the best of our knowledge, all existing registration methods have been
applied to ex-vivo mouse brain images. However, the use of ex-vivo images does
not allow serial imaging studies which are aimed at detecting differences across
time within an individual (e.g. atrophy) or within a group. In this paper we
focus on developing methods for MRI of the brain acquired in-vivo. This raises
new challenges for both the computational techniques as well as the image ac-
quisition techniques used in in-vivo studies. In this paper, we demonstrate that
existing image registration techniques are capable of producing acceptable seg-
mentations on in-vivo mouse brains. The longitudinal volumes can be measured
in two different ways, one way is to register everything to a common reference
and the other is to use each animal’s first scan as its control. We explore the
two methods and report on their level of consistency. Finally, we show the abil-
ity of our method to quantify changes in growth between strains in anatomical
structures.

2 Materials and Methods

We have developed image registration techniques which have been applied to
breast images, cardiac motion tracking and brain development in neonates [3].
The global registration between two images is modelled by an affine transfor-
mation and the local registration is described by a free-form deformation (FFD)
based on B-splines. The FFD is modelled as a mesh of control points. Nor-
malised mutual information is used on a voxel-based similarity measure which
is insensitive to intensity changes. The registration is achieved by minimising
the cost function, which represents a combination of the cost associated with
the smoothness of the transformation and the cost associated with the image
similarity [3].

2.1 Data

Animal experiments complied with GSK ethical and UK legal requirements.
Transgenic (Tg) mice were used which over-expressed proteins linked to
Alzheimer’s disease [9]. The transgene leads to abundant deposition of the pro-
tein β − amyloid in the brain from approximately 5 months of age. Wild-type
(Wt) mice, which behaves as the C57Bl6 background strain, were used as con-
trols. MRI was carried out at 6, 9, 11 and 14 months of age.

2.2 MR Acquisition Protocol

Prior to MR imaging the mice were anesthetized with isoflurane and their heads
were immobilised in a custom-built head holder. Their core temperature and
spontaneous respiration was monitored during the imaging process and kept con-
stant. After recovery from anesthesia the mice were returned to their home cages.
Images were acquired on a 4.7T Brucker Biospec 40cm horizontal bore magnet
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using 25mm diameter volume receive and 12 cm diameter volume transmit coils.
A multi-slice (120 slices) multi-echo CPMG dataset was obtained using inter-
leaved scans of slice thickness 0.31mm, with final voxel resolution 78×78×156μm,
was acquired at each time-point. The field of view was 20 × 20 × 18.6mm and
the matrix was 256 × 256. Total imaging time was 2 hours.

During data acquisition, we acquired two interleaved volumes off set by a
half a slice thickness (the sequences S1 and S2). This acquisition was repeated
to obtain another image of the same animal (the sequences S3 and S4). The
sequences were interleaved to achieve better pseudo resolutions. An image of an
animal was obtained by merging S1 and S2. Two images may be obtained of the
same animal by merging S1, S2 and S3, S4. During these acquisitions the animals
were left in the scanner and not moved. The S3 and S4 sequences were acquired
in the event animal movement during S1 and S2. This provides data to check for
reproducibility in measurements as well the ability to deal with potential loss of
data due to animal motion during scanning.

2.3 Measuring Volumes In-Vivo in Longitudinal Data

Our aim is to carry out volumetric analysis of the brain and its structures over
time. In order to achieve our goal, we require a mouse atlas. We use the LONI
atlas [10] from the Mouse Atlas Project (MAP) as our atlas for segmentation.
All 27 structures labelled in the LONI atlas were propagated into each animals
native space. Since the MR acquisition parameters for the LONI atlas and our
MR acquisitions were different, we register the LONI atlas to one of our animals,
to obtain a segmentation of the brain. This segmentation is then used as the atlas
in our study. Figure 1 shows the mouse brain atlas annotated with 5 structures
for illustration purposes.

Thalamus

Fornix
System

Cerebral
Cortex

MidBrain
Hind Brain

Cerebellum

Hippo−
    campus

Fig. 1. The annotated atlas obtained via registering to the LONI atlas
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Segmentation by Direct Atlas Registration. In the first stage the brain
atlas is aligned to each image using an affine registration. Using the affine regis-
tration, an approximate segmentation of the brain for each animal is obtained.
To compensate for residual misalignment after affine registration, the segmenta-
tion is then dilated by 5 voxels. The purpose of the approximate segmentation
of the brain was to improve the speed and accuracy of the subsequent non-
rigid registration. In the second stage, we perform a non-rigid registration of the
mouse brain atlas to each image using the approximate brain mask obtained
previously. We use a multi-resolution approach starting with 2mm control point
spacing going down to 0.25mm. After non-rigid registration, the labels of the
brain atlas, Oatlas, are then propagated into the space of each animal to obtain
a final segmentation. We can then compute the growth rate as the difference in
volume across time within the same animal as shown below:

ΔVt(Olabel) = Vt+1(Olabel) − Vt(Olabel)

Segmentation by Indirect Atlas Registration. In the previous method,
each image is segmented by registering the mouse brain atlas directly to each
image. An alternative method for segmentation is to register the images of an
animal to a baseline scan of this animal. In our example, the first time point at
6 months serves as a baseline and the images acquired at 9, 11 and 14 months
are registered to the baseline image using non-rigid registration. The baseline
image can be segmented using the method described in the previous section.
The growth rate for each structure, Olabel, can be computed by integrating the
determinant of the Jacobian matrix, J, of the transformation between time points
across every voxel, x, belonging to Olabel in the baseline image as shown below:

ΔVt(Olabel) =
∫

x∈Obaseline

det|J(x)|

3 Results

In this section, we present the results using the two registration methods de-
scribed above. All 27 labels were propagated from the atlas using direct and
indirect atlas registration methoods. Figure 2 shows an illustration of the seg-
mentations obtained using direct and indirect atlas registration methods for an
animal at 9 months. The propagated labels include, MidBrain-HindBrain(MB-
HB), hippocampus, thalamus, fornix system, cerebral cortex and cerebellum.

3.1 Consistency Measure

We wanted to investigate the consistency of our label propagation methods. In
order to calculate the consistency in our segmentations, we transform all segmen-
tations from both registration methods in to a common reference (atlas space).
The Similarity Index(SI) is then calculated between the atlas and segmentaion
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(a) Atlas (b) Direct registration (c) Indirect Atlas Registra-
tion

Fig. 2. Label propagation using direct and indirect atlas registration. Fig 2(b) shows
segmentation obtained via direct registration and Fig 2(c) shows segmentation obtained
via indirect atlas registration.

obtained via label propagation. The SIs were calculated for all 9 month old
transgenic animals. The metric used to calculate the SI is given below

SI =
|Iatlas ∪ Isegmentation |
Iatlas ∩ Isegmentation

Figure 3(a) shows the SI for both methods. We measured the SI for whole
brain, hippocampus, cerebellum, MB-HB and cerebral cortex. The error bars
shows the standard deviations of the SI measurements within groups. As can
be seen from Figure 3(a), we failed to observe any significant differences in the
SI between the two methods described above. However, since indirect registra-
tion requires more registrations to obtain a segmentation relative to the direct
registration method, it is more likely to have the larger registration errors of
the two. Therefore we use the direct registration method as the preferred label
propagation method for all of our experiments from here on.

3.2 Reproducibility of Volume Measurements

In order to investigate the ability of our registrations to reproduce the measure-
ments, we perform the same registration on both images obtained via merging
S1S2 and S3S4 sequences acquired at 6 months using the direct registration
method. Figure 3(b) shows a Bland-Altman plot of the measurements for the
two sets of data for whole brain volume. As can be seen from Figure 3(b) we are
able to reproduce our results to within 0.4% of whole brain volume.
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Fig. 3. Fig 3(a) shows consistency measure of whole brain and anatomical structures
using direct and indirect registration. Fig 3(b) shows Bland-Altman plot of repeated
measurements for whole brain volumes using direct registration method.

3.3 Measuring Growth Rates

We use the direct registration method to measure growth rates for the whole
brain, as well as anatomical structures like hippocampus and cerebral cortex
as defined by the LONI atlas. The growth curves for transgenic and wild-
type are shown in Figure 4(b) and 4(c) respectively. The graph on the y-axis
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Fig. 4. Growth measurements for Transgenic and Wildtype Mouse brains. Growth is
plotted as a percentage of volume change with respect to time point 1 measurement.
Fig4(a) shows the mean volume for TASTPM and WT.
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represents growth as a percentage of the measured volume at 6 months. The x-
axis represents time as discrete points. The error bars shows the group standard
deviations of the measurements at a given time point. The growth curves shown
in Figure 4(b) and 4(c) provides evidence of growth in structures for both strains
of animals. More over our results shows different cross-sectional growth rates for
whole brain, cerebral cortex and hippocampus. However there exists a larger
group variation of structural volumes within the transgenic in comparison to the
wild-type. This variation of measurement is likely to be due to the biological
variability of the genetically modified groups to the controls. Figure4(a) shows
the mean volume at 9 months for transgenic and wild-type.

4 Discussion and Conclusions

We set out to measure longitudinal volume changes in mouse brains using image
registration techniques. To the best of our knowledge, all existing work has been
done on ex-vivo brains. Our data set consisted of two strains of animals (trans-
genic and wild-type) imaged at 6, 9, 11 and 14 months. In order to analyse our
registration method’s abilities of reproducibility, we measured volumes repeat-
edly on the same animals using two different images of the same animal. Direct
and indirect registration methods were used to measure volumes. We found no
significant differnce in measured volumes between the direct and indirect regis-
tration methods. We were able to quantify growth in between strains which were
statistically significant.

In conclusion, we have shown that our registration methods allows both cross-
sectional and longitudinal studies. We are able to reproduce our whole brain
volume measurements to within 0.4%. The SI values shows a high similarity
between the atlas and the segmentations obtained via registration. We have
also demonstrated the ability to quantify changes in growth between strains
in whole brain, hippocampus and cerebral cortex. In future, we plan to focus
on analysing the diffusion and T2 maps as well as applying sophisticated data
mining techniques.

References

1. International Human Genome Sequencing Consortium: Initial sequencing and anal-
ysis of the human genome. Nature, 409, 860–921, 2001

2. Mouse Genome Sequencing Consortium: Initial sequencing and comparative anal-
ysis of the mouse genome. Nature, 420, 520–562, 2002

3. D.Rueckert and L. I. Sonoda and C. Hayes and D. L. G. Hill and M. O. Leach and D.
J. Hawkes: Nonrigid Registration Using Free-Form Deformations : Applications to
Breast MR Images. IEEE Transactions On Medical Imaaging, 18, 8, 712–721, 1999

4. N. Kovacevic and J. T. Henderson and E. Chan and N. Lifshitz and J. Bishop
and A.C. Evans and R.M. Henkelmen and X. J. Chen: A Three-dimensional MRI
Atlas of the Mouse Brain with Estimates of the Average and Variability. Cerebral
Cortex, 15, 5, 639–645, 2005



Deformation Based Morphometry Analysis of Serial MRI of Mouse Brains 65

5. R. Verma and S. Mori and D. Shen and P. Yarowsky andJ. Zhang and C.Davatzikos:
Spatiotemporal maturation patterns of murine brain quantified by diffusion tensor
MRI and deformation-based morphometry. PNAS, 102, 19, 6978–6983, 2005

6. X.J. Chen and N. Kovacevic and N. Lobaugh and J.G. Sled and R.M.Henkelman
and J.T.Henderson: Neuroanatomical differences between mouse strains as shown
by high-resolution 3D MRI. NeuroImage, 29, 99–105, 2005

7. A.A. Ali and A.M. Dale and A.B. Badea and G.A.Johnson: Automated segmenta-
tion of neuroanatomical structures in multispectral MR microscopy of the mouse
brain. NeuroImage, 27, 425–435, 2005

8. B.J. Nieman and N.A.Bock and J.Bishop and X.J. Chen and J.G. Sled and J.
Rossant and R.M. Henkelman: Magnetic resonance imaging for detection and anal-
ysis of mouse phenotype. NMR Biomed., 18, 447–468, 2005

9. D.R. Howlett and J.C.Richardson and A.Austin and AA Parsons, and S.T. Bate
and D.C. Davies and M.I. Gonzalez: Cognetive correlates of Aβ deposition in
male and female mice bearing amyloid precursor protein and presenilin-1 mutant
trasngenes. Brain Research., 1017, 130–136, 2004

10. A. MacKenzie-Graham, E. Lee, I. D. Dinov, M. Bota, D. W. Shattuck, S. Ruffins,
H. Yuan, F. Konstantinidis, A. Pitiot, Y. Ding, G. Hu, R. E. Jacobs and A.W.
Toga: A multimodal, multidimensional atlas of the C57BL/ 6J mouse brain. J.
Anat., 204, 93–102, 2004



Canonical Correlation Analysis of Sub-cortical Brain
Structures Using Non-rigid Registration

Anil Rao1, Kola Babalola2, and Daniel Rueckert1

1 Visual Information Processing Group, Department of Computing,
Imperial College London, 180 Queen’s Gate, London SW7 2BZ, U.K

2 Division of Image Science & Bio-medical Engineering,
University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PTS, U.K

Abstract. In this paper, we present the application of canonical correlation anal-
ysis to investigate how the shapes of different structures within the brain vary
statistically relative to each other. Canonical correlation analysis is a multivariate
statistical technique which extracts and quantifies correlated behaviour between
two sets of vector variables. Firstly, we perform non-rigid image registration of
93 sets of 3D MR images to build sets of surfaces and correspondences for sub-
cortical structures in the brain. Canonical correlation analysis is then used to ex-
tract and quantify correlated behaviour in the shapes of each pair of surfaces. The
results show that correlations are strongest between neighbouring structures and
reveal symmetry in the correlation strengths for the left and right sides of the
brain.

1 Introduction

The area of computational anatomy is a rapidly developing discipline [14]. With the in-
creasing resolution of anatomical scans of the human brain, a number of computational
approaches for characterising differences in the shape and neuro-anatomical configura-
tion of different brains have emerged. Morphometric techniques can be classified into
techniques that deal with differences in brain shape (deformation-based morphometry
[3, 9]) and those which deal with differences in the local composition of brain tissue
after removing global shape differences (voxel-based morphometry [1]). Even though
both approaches require warping of images into a standard reference space using either
elastic [20, 4, 13] or fluid [8, 7, 6] registration techniques, they differ fundamentally in
the way the resulting deformation fields are used. In deformation-based morphometry
the deformation fields themselves are used to study similarities and differences, while in
voxel-based morphometry these fields are used principally for normalisation. There is
currently an active discussion in the neuroscience community regarding the advantages
and disadvantages of both methods [5, 2].

A prominent example of modelling the variability of neuro-anatomical structures
across a population is the probabilistic atlas of the human brain developed at the Mon-
treal Neurological Institute (MNI) [10] where MR images from 305 subjects were
mapped into stereotactic space, intensity normalised and averaged on a voxel-by-voxel
basis as part of the International Consortium for Brain Mapping (ICBM) [19]. An al-
ternative approach uses statistical models such as active shape models [12] or active
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appearance models [11] to represent the variability of the anatomy across subjects. Sta-
tistical shape modelling refers to the analysis of the shapes of sub-structures (such as the
lateral ventricles in the centre of the brain) and aims to describe their variation across
subjects and between groups of subjects (e.g., comparing ventricle size and shape be-
tween Alzheimer’s sufferers and age-matched normals). Work on shape modelling is
limited by the generally unsolved problems of how to segment these structures and de-
termine correspondences across subjects, and also by the relatively unexplored area of
how different structures vary statistically relative to each other within the brain. The
latter problem will be addressed specifically in this paper.

In this paper we describe the application of canonical correlation analysis for the
analysis of the inter-structure shape variation within the brain. Canonical correlation
analysis (CCA) is a multivariate statistical tool for describing and quantifying correlated
variation between sets of vector variables. It is an extension of multilinear regression
and has been used to analyse data in a number of different application areas. Within
the field of imaging, canonical correlation analysis has been previously used in image
segmentation of magnetic resonance spectroscopic images [16] and the identification
of noise in functional magnetic resonance images [21]. Canonical correlation analysis
has also been used to estimate the shapes of obscured anatomical sections of the brain
from visible structures in magnetic resonance images [17]. However, there it was used
as a predictive tool for a limited number of structures within the brain. Here we use it to
extract highly correlated factors (or modes) of variation in shape between a number of
different anatomical structures within the brain and an associated correlation coefficient
that quantifies the degree of correlation in this shape variation. This reveals statistical
dependencies between different shapes in the brain that ultimately we would like to
incorporate into a hierarchical model-fitting scheme. In the next section we describe the
mathematical formulation of canonical correlation analysis before presenting results of
the application of this technique in the analysis and prediction of brain structures in
section 3.

2 Canonical Correlation Analysis

The object of canonical correlation analysis is to extract and quantify correlations be-
tween two sets of vector variables, X = {xi}, Y = {yi}. The technique determines
linear combinations of the components of the vector variables in X that are maximally
correlated with linear combinations of the components in Y, and the strength of each of
the correlations is described by a corresponding correlation coefficient that lies between
zero and one. The linear combinations, known as the canonical modes, give insight into
the relationships between the two sets of variables [18].

The canonical modes âk, b̂k and correlation coefficients ρk for X and Y are calcu-
lated by solving the eigenvalue equations

C−1
XXCXY C−1

Y Y CT
XY âk = ρk

2âk

C−1
Y Y CT

XY C−1
XXCXY b̂k = ρk

2b̂k

(1)

where CXX , CY Y and CXY are the covariance matrices describing variation within X,
Y, and between X and Y respectively [16]. The calculated modes âk and b̂k are then the
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linear combinations of variable components in X and Y respectively that have a corre-
sponding correlation coefficient ρk. The number of modes and correlation coefficients
determined by a canonical correlation analysis of X and Y will be equal to the minimum
of the number of dimensions in the vectors xi and yi. A single correlation coefficient ρ
representing the overall correlation between X and Y can be determined by averaging
the correlation coefficients over all calculated canonical modes.

Canonical correlation analysis has certain maximal properties similar to those of
principal components analysis (PCA). However, the two techniques differ fundamen-
tally in that while CCA focuses on relationships between two groups of variables, PCA
considers interrelationships within a single group of variables [18]. If, for example, we
were to pool the two sets of variables X = {xi} and Y = {yi} into a single set and
then perform a PCA, we would lose the distinction between the two sets of data as the
PCA does not ’know’ to which data set each variable originated from. The resulting
modes would then just model the variation of the composite data set without explicitly
describing the dependencies of the individual data sets on each another.

3 Canonical Correlation Analysis of Brain MR Data

3.1 Method

A set of MR images of 93 subjects from the Centre for Morphometric Analysis (CMA),
Boston, was used to create a training set of surfaces over which the canonical correlation
analysis was applied. The images were obtained at resolution 1mm x 1.5mm x 1mm
and had been manually labelled in order to delineate structures within the brain by
experts at the CMA. Firstly, a reference subject was chosen and the surfaces of 17
different sub-cortical brain structures of this reference subject were calculated from
its labelled image. These surfaces are shown in figure 1 and represent the left and right
lateral ventricle, left and right caudate, left and right putamen, left and right accumbens,
left and right pallidum, left and right thalamus, left and right amygdala, left and right
hippocampus and the brain stem.

In order to model the variation in the surfaces of these structures across all subjects,
correspondences between each reference surface point and the corresponding surface
in each of the other subjects must be determined. These were calculated by registering
the labelled magnetic resonance images of each subject to the reference image using
a B-Spline FFD registration algorithm which represents each transformation as a sum
of a global affine component and a non-rigid component based on B-Splines [20]. The
optimal transformation is found by maximising the label consistency of the labelled
images which measures the degree of their alignment.

The registrations were then used to create a set of surface points for each of the struc-
tures over all 93 subjects. Firstly, for a given non-reference subject, the corresponding
reference to subject transformation was applied to the reference surfaces to give a set
of subject surface points. Then, for each structure, the calculated surface points of the
93 subjects were Procustes-aligned using scaling, rotations and translations [15, 12] to
give the final surface point coordinates for each structure and subject. The Procustes-
alignment ensures that any subsequent statistical modelling of the generated surface
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Fig. 1. This colour figure shows each of the 17 structures that we considered

points only describes variations in the shape of a structure over the training data rather
than variation due to differences in the position, orientation or size of a structure.

For each individual structure X, the vectors xi representing the surface point coor-
dinates for structure X of the ith subject 0 < i < 93, were pooled to form a set of
vectors X = {xi}. Prior to performing the canonical correlation analysis of surface
point coordinates, a principal components analysis was performed on the surface point
coordinates for each individual structure across the training data to reduce the dimen-
sionality of the data. The dimension reduction minimizes the computational memory
burdens of the canonical correlation analysis and also eliminates colinearity in the data
which can cause instability in the calculation of CCA. Fifty-five modes of variation were
retained from the prinicipal components analysis of each structure ensuring that at least
95% of the variation in that structure across the training data could be represented. For
each structure X, the set X = {xi} was then transformed into its corresponding prin-
cipal components basis to give a new set of vectors X̃ = {x̃i}. Canonical correlation
analysis was then performed for all pairs of structures X and Y using the correspond-
ing sets of vectors X̃ = {x̃i} and Ỹ = {ỹi}. In each case, fifty-five canonical modes
and correlations are determined describing the correlated behaviour between structure
X and structure Y. For a given pair of structures X and Y, these correlations were then
averaged to give a final correlation coefficient ρ between zero and one describing the
strength of the correlations between the two structures. We chose not to retain the actual
canonical modes as we were interested in quantifying correlations rather than analyzing
the correlated behaviour itself.

3.2 Results

Figure 2 shows the canonical correlation coefficients for each pair of structures as a
grey-level matrix image in which brighter areas represent higher correlations. We can
see that the correlation coefficients achieve the maximum value of one along the top-
left to bottom-right diagonal as this line represents the correlations between a structure
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Fig. 2. This figure shows the matrix image of the correlations ρ between each pair of structures. In
the image, bright areas represent strong correlations close to 1, while dark areas represent weaker
correlations close to 0.5.

Table 1. This table lists each structure and its most correlated structure

Structure Most Correlated ρ Structure Most Correlated ρ
Structure Structure

L. Lateral Ventricle R. Lateral Ventricle 0.7836 L. Pallidum L. Putamen 0.7714
R. Lateral Ventricle L. Lateral Ventricle 0.7836 R. Pallidum R. Putamen 0.7748
L. Caudate L. Lateral Ventricle 0.7604 L. Thalamus L. Lateral Ventricle 0.7659
R. Caudate R. Lateral Ventricle 0.7703 R. Thalamus R. Lateral Ventricle 0.7681
L. Putamen L. Pallidum 0.7714 L. Amygdala L. Hippocampus 0.7492
R. Putamen R. Pallidum 0.7748 R. Amygdala R. Hippocampus 0.7509
L. Accumbens L. Caudate 0.7437 L. Hippocampus L. Lateral Ventricle 0.7509
R. Accumbens R. Putamen 0.7406 R. Hippocampus R. Amygdala 0.7509
Brain Stem R. Thalamus 0.7483

and itself which are always perfect. The matrix image is also symmetrical about this
diagonal as the calculation of the correlation coefficients between any two structures is
independent of which is taken to be structure X and which is taken to be structure Y.

If we consider those correlations lying off the leading diagonal we can see that
each pair of structures is correlated to different degrees. For example, the right pal-
lidum is better correlated to the right putamen (ρ = 0.7748) than to the left accumbens
(ρ = 0.7236). This means that, across the training data, the shape of the right pallidum
varies in a more correlated fashion with the shape of the right putamen than with the
shape of the left accumbens. In table 1 we show the best correlated structure (strongest
correlate) for each of the 17 structures and we can see that the strongest correlates of
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(a) (b)

Fig. 3. This figure shows each of the lateral ventricles in grey with the three most strongly cor-
related structures to each of them in in red, green and blue in order of decreasing correlation
strength. Figure (a) shows the left lateral ventricle (grey), right lateral ventricle (red), left thala-
mus (green) and left caudate (blue) and figure (b) shows the right lateral ventricle (grey),the left
lateral ventricle (red), the right caudate (green) and the right thalamus (blue).

each structure are proximal to it. For example, the left/right caudates are most strongly
correlated with the left/right lateral ventricles respectively and we can see in figure 1
that these structures are next to each other. Similarly, each of the lateral ventricles, puta-
men, accumbens, pallidum, thalamus and amygdala are best correlated with proximal
structures. Intuitively, this makes sense as one would expect variation in the shape of
a structure to be reflected in the shapes of proximal and neighbouring structures. An
example of this relationship between proximity and correlation strength is visualised in
figure 3, in which the three strongest correlates for the left/right lateral ventricles are
shown. In this figure the lateral ventricles are shown in grey and the correlated structures
are shown in red, green and blue in order of decreasing correlation strength.

There is also a degree of symmetry in the strongest correlates for structures that ap-
pear in both sides of the brain. For example, the left putamen is most strongly correlated
with the left pallidum, while conversely the right putamen is most strongly correlated
with the right pallidum. This symmetry is repeated for all the structures apart from the
hippocampus and accumbens. Such an example is shown in figure 4, in which the three
most correlated structures to the left and right pallidum are shown. Here we can see
that the strongest correlates of each pallidum are the neighbouring putamen and that
the pallidum are strongly correlated to each other. We find that equivalent structures on
each side of the brain are relatively highly correlated for all the structures apart from
the putamen and accumbens.

In order to investigate correlations that are not associated with symmetries in the
brain, we also performed a canonical correlation analysis in which equivalent struc-
tures on each side of the brain were concatenated into single structures. The resulting
surfaces were Procustes aligned and 56 principal components of the PCA were retained
before performing the canonical correlation analysis. Table 2 shows the strongest and
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(a) (b)

Fig. 4. This figure shows the left and right pallidum in grey with the three most strongly correlated
structures to each of them in red, green and blue in order of decreasing correlation strength. Figure
(a) shows the left pallidum (grey), left putamen (red), right pallidum (green) and left thalamus
(blue) and figure (b) shows the right pallidum (grey), right putamen (red), right thalamus (green)
and left pallidum (blue).

Table 2. This table lists each composite structure and its most/least correlated composite structure

Structure Most/Least Correlated Structure ρ

Lateral Ventricle Caudate/Accumbens 0.7857/0.7367
Caudate Lateral Ventricle/Brain Stem 0.7857/0.7352
Putamen Pallidum/Hippocampus 0.7829/0.7387
Accumbens Caudate/Brain Stem 0.7489/0.7346
Pallidum Putamen/Hippocampus 0.7829/0.7343
Thalamus Lateral Ventricle/Amygdala 0.7848/0.7427
Amygdala Hippocampus/Brain Stem 0.7613/0.7248
Hippocampus Amygdala/Pallidum 0.7613/0.7343
Brain stem Thalamus/Amygdala 0.7563/0.7248

weakest correlates for each of the 9 composite structures. As would be expected, the
strongest correlations depicted in table 2 match those shown in table 1 for the individ-
ual structures. Overall, the strongest correlates to each of the 9 structures are proximal
to them, while the weakest correlates of structures are distal to them in all cases apart
from the lateral ventricles.

4 Discussion

The results of the canonical correlation analysis imply that there are differing degrees of
correlated variation between the shapes of different structures within the brain.
The CCA gives larger correlations for structures that are close to each other, which
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suggests that the shapes of structures both influence, and are influenced by, those struc-
tures that are proximal to them. Intuitively, this makes sense as one would expect
variation in the shape of a structure to be reflected in the shapes of proximal and neigh-
bouring structures. However, it should be noted that the correlations and associated
modes determined by canonical correlation analysis do not necessarily describe a large
amount of the variation between structures but instead describe the most correlated
behaviour in that variation.

The most interesting aspect of this work that we are currently pursuing is the incor-
poration of canonical correlation analysis into a hierarchical model-fitting algorithm.
Since CCA quantifies the strengths of the correlations between the shapes of different
structures, it can be combined with shape prediction techniques such as partial least
squares regression to guide a model fitting in a hierarchical fashion. Such a technique
would involve performing CCA on individual structures and groups of structures as we
have described in this paper.
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Abstract. The application of fluoroscopic images in operation is pervasive,  
especially for orthopaedic surgery. Anatomy-based 3D/2D registration, rigid or 
non-rigid, has been proven to improve the accuracy and precision of various 
image-guided therapies. One of the key steps for a successful anatomy-based 
registration is to establish 3D/2D correspondence between the 3D model and 
the 2D images. This paper presents a novel 3D/2D correspondence building 
method based on a non-rigid 2D point matching process, which iteratively uses 
a symmetric injective nearest-neighbor mapping operator and 2D thin-plate 
spline based deformation to find a fraction of best matched 2D point pairs be-
tween features detected from the X-ray images and those extracted from the 3D 
model. The estimated point pairs are further ranked by their shape context 
matching cost and those with high cost are eliminated. The remaining point 
pairs are then used to set up a set of 3D point pairs such that we turn a 3D/2D 
registration problem to a 3D/3D one, whose solutions are well studied. Rigid 
and non-rigid registration algorithms incorporating the novel 3D/2D correspon-
dence building method are presented. Quantitative and qualitative evaluation 
results are given, which demonstrate the validity of our method. 

1   Introduction 

The application of fluoroscopic images in operation is pervasive, especially for ortho-
paedic surgery. Disadvantages of fluoroscopy include two-dimensional (2D) projec-
tion image from single view, limited field of view, distorted image, and high radiation 
to both the patient and the surgical team. Various papers [1, 2] have described meth-
ods of calibration and registration of fluoroscopic images using an optical localizer, 
thus allowing to compute the position of the surgical tools relative to the patient anat-
omy with respect to acquired images during intervention. However, the surgeon still 
needs to mentally fuse projection images taken from different view points. No real 
three-dimensional (3D) information is available. 

One way to address this problem is to do anatomy-based 3D/2D registration, rigid 
or non-rigid, using 3D model extracted from either CT data or from statistical shape 
models. The co-registered or reconstructed anatomical model can then provide de-
tailed 3D information for the considered bone structure, which has been proven to 
improve the accuracy and precision of various image-guided therapies [3, 4]. 
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However, anatomy-based 3D/2D registration is not a trivial task. One of the key 
steps for a successful 3D/2D registration is to establish correspondence between the 
3D model and the 2D images. This paper presents a novel 3D/2D correspondence 
building method based on a non-rigid 2D point matching process, which iteratively 
uses a symmetric injective nearest-neighbor mapping operator and 2D thin-plate 
spline (TPS) based deformation to find a fraction of best matched 2D point pairs be-
tween features detected from the 2D images and those extracted from the 3D models. 
The estimated point pairs are further ranked by their shape context matching cost and 
those with high matching cost are eliminated. The remaining point pairs are then used 
to set up a set of 3D point pairs such that we turn a 3D/2D registration problem to a 
3D/3D one, whose solutions are well studied. 

1.1   Our Contributions 

The main contribution of this paper is the novel 3D/2D correspondence building 
method based on the iterative non-rigid point matching process and on the shape con-
text distance based outlier elimination. This matching process belongs to a more gen-
eral non-rigid point matching framework [5, 6]. Thin-plate spline (TPS) is used in 
their papers and the present paper as the parameterization of the deformation. The 
main difference between theirs and ours are: (1) the design philosophy is different. 
The algorithms presented in [5, 6] are targeted for more general applications, whereas 
our method is specially designed for establishing 3D/2D correspondence. Our empha-
sis is to find a small number of point pairs with “good” matching quality; (2) their 
solutions to 2D point correspondence are different from ours. 

Compared with the previously published 3D/2D correspondence building methods, 
our method differs in the way to extract the apparent contours and in the features 
extracted from the input images. Unlike in [3, 7, 8, 9] where the apparent contours are 
extracted in the primary space by an exhausting searching of all edges on the surface 
modes, we use a method introduced by Hertzmann and Zorin [10], which is based on 
dual space theory and provides a faster and smoother contour generator. More impor-
tantly, our 3D/2D correspondence building method is based directly on edge pixels, 
which can be easily extracted by applying edge detectors to the input images. In con-
trast, all previously published methods require an explicit contour extraction, which 
may be quite difficult when the shapes involved become complex or when the back-
grounds of the images become complex. 

2   Image Feature Extraction 

A standard implementation of Canny edge detector with hysteresis [11] is used to find 
the edge pixels of the considered bone structure from the input images. To suppress 
spurious edges, Gaussian convolution kernel with large width is used to smooth the 
input images first. The detected edge pixels are further processed using the knowledge 
about the fluoroscope. Detected edge pixel whose intensity is below a pre-selected 
threshold or whose distance to the image center is bigger than a certain threshold is 
eliminated. 
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3   Apparent Contour Extraction 

For fast extraction a smooth apparent contour from a given surface model, we use the 
approach introduced by Hertzmann and Zorin [10]. This approach first constructs a 
dual representation of the given surface mesh in a four-dimensional (4D) space based 
on the position and tangent planes of every vertex. The focal point’s dual (a plane in 
4D) intersects with the mesh triangles dual. Before hand, the approach normalizes the 
dual vertices using the 

∞l  norm so that the vertices end up on one of the unit hyper-

cube’s sides. This reduces the problem to intersecting the triangles on a hypercube’s 
sides with the focal point’s dual plane, i.e., to intersect triangles in eight 3D unit cubes 
(the eight hypercube sides) with a plane. By using Octree for each hypercube sides, 
the extraction process can be greatly speeded up. 

For a point ),,,(, Mjs
j 21=  on the extracted apparent contours using the pro-

jection parameters of input X-ray image s, we do a forward projection of this point 
onto image s to get its 2D position s

jA . Each 2D point in }{ s
jA  is then associated to a 

3D point in }{ s
j . In the following section, we will describe an iterative matching 

process for build 2D association between the points in }{ s
jA  and the detected edge 

pixels in the X-ray image s.

4   Iterative Non-rigid 2D Matching Process 

Following the general framework of point matching in [5], we also formularize the 
2D matching as a two-stage process: correspondence and spatial mapping. TPS is 
used here for parameterization of the spatial mapping. But unlike [5, 6], we solve the 
correspondence problem differently. To make the description simple, we denote the 
detected edge pixels in image s as },,,,{ NiII s

i
s 21==  and the 2D projection of the 

apparent contours as },,,,{ MjAA s
j

s 21== . Here we focus on 2D matching in one 

image. The overall correspondence is established by combining matched point pairs 
found in all input images. 

Definition 1: Injective nearest-neighbor (IN). A point s
iI  can only be matched to at 

most one point of sA  and this point must be the closest one in sA  to s
iI .

Definition 2: Cross-matching. Assume there are two matched pairs ( s
iI , s

jA ) and 

( s
mI , s

nA ). If the line segment from s
iI  to s

jA  intersects at a point with the line seg-

ment from s
mI  to s

nA , we define this event as cross-matching. 

Definition 3: Symmetric Injective nearest-neighbor (SIN). s
iI  and s

jA  is a sym-

metric injective nearest-neighbor if and only if s
jA  is the closest point in sA  to s

iI

and s
iI  is the closest point in sI  to s

jA .
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Definition 4: Symmetric injective nearest-neighbor mapping operator (SIN-MO).
We define the action of finding a number of SIN’s from two points set as symmetric 
inject nearest-neighbor mapping operator.  

Claim 1: If we apply SIN-MO on two point sets to find a number of matched point 
pairs, all of them are one-to-one mapping. 
Claim 2: If we apply SIN-MO on two point sets to find a number of matched point 
pairs, there is no cross-matching (see Appendix for a proof). 

The overall iterative non-rigid 2D matching process can be described as follows. 

Input: Two point sets sI  and sA , and a weight parameter λ
Output: A list of 2D matched point pairs 
Initialization: We first calculate the centroids of sI  and sA , and then translate sA
so that its centroid is aligned with the centroid of sI
Iteration: It is a dual update process taking those points sI  as references. 
Stage 1: Update the correspondence: Applying SIN-MO on sI  and sA  to find a 
number of SIN’s. Let’s denote the set of SIN’s as },,,);,{( KaAI s

a
s
a 21=

Stage 2: Update the positions of all points in sA : This is done in a two-step  
procedure. 

A. Compute a 2D TPS-based spatial mapping f  using the estimated set of 

SIN’s by minimizing the following cost function: 

dxdy
y
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B. Update the positions of all points in sA  based on the estimated TPS trans-
formation f

Repeat stage 1 and 2 a certain times (e.g. 30) or until convergence. 

5   Using Shape Context Distance to Improve the Robustness 

The 2D matching process described above has the advantages of robustness to certain 
outliers and of automatic exclusion of cross matching, which is an important property 
for preservation of topology in non-rigid registration. However, it is possible for the 
proposed algorithm to create false matches. In this paper, we use the shape context 
matching cost to further rank the point pairs estimated by the 2D matching process 
and to eliminate those with high cost such that the false matching rate is reduced. 

The shape context of a point is a measure of the distribution of other points relative 
to it [12]. Consider two points, pi in one shape and qj in the other shape. Their shape 
contexts are hi(k) and hj(k), two K-bin normalized histograms at pi and qj for k = 1, 2, 
…, K, respectively. Let Cij denote the cost of matching these two points. As shape 
context are distributions represented as histograms, the 2χ  test statistic is used to 

define Cij in [12] as following equation: 
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Those point pairs extracted by the 2D matching process are regarded as “best 
matched” in terms of shortest distance in the context of iteratively deforming one 
shape to match the other. By adding a step of shape context matching cost checking, 
we also take the neighborhood distributions of those point pairs into consideration. 

6   3D Matched Point Pair Building 

Assume that we have found a set of 2D matched point pairs },,,);,{( LbAI s
b

s
b 21= ,

we are trying to build the corresponding 3D point pairs in this step as follows. For a 
2D point s

bI , we can find a projection ray s
br  emitting from the focal point of image s

through point s
bI . Additionally, for its matched point s

bA , we always know its associ-

ated 3D point s
b  on the apparent contour of the model whose projection onto the 

image s is s
bA . By computing a point s

bv  on the ray s
br  which has the shortest distance 

to s
b , we can build a 3D point pair ),( s

b
s
bv . Combining all these 3D point pairs, we 

can establish 3D/2D correspondence between the input model and images.  

7   Anatomy-Based Rigid or Non-rigid Registrations 

As soon as a set of matched 3D point pairs are established, we have turned a 3D/2D 
registration problem to a 3D/3D one whose solutions are well studied. A complete 
description of these solutions is beyond the scope of this paper. Here we would like to 
present two algorithms to illustrate how to incorporate the proposed correspondence 
building method into rigid or non-rigid 3D/2D registrations. 

7.1   Rigid 3D/2D Registration 

The corresponding rigid 3D/3D registration problem is a well-known problem and 
several efforts have been made to solve it. One of the most popular methods is the 
iterative closest point (ICP) algorithm [13, 14]. The ICP is based on the search of 
pairs of closest points, and the computation of a paired-point matching transforma-
tion. The result transformation is then applied to one set of points, and the procedure 
is iterated until convergence. The local converging behavior of ICP algorithm requires 
a proper initialization, which can be achieved by a paired-point matching using ana-
tomical landmarks of the considered bone structures. 

Incorporating the present 3D/2D correspondence building method, we turn a 
3D/2D registration problem to a 3D/3D one. Similar to the ICP algorithm, in each 
step we calculate a paired-point matching transformation based on the estimated point 
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pairs and then apply the transformation to one side of the registration. This procedure 
is then iterated until convergence. We call this procedure the Iterative Best Matched 
Projection Point (IBMPP) algorithm. The difference between the IBMPP algorithm 
and the ICP algorithm is that in each step point sets from both sides of the registration 
are changeable for the IBMPP algorithm while only one point set is changeable for 
the ICP algorithm. 

7.2   Non-rigid 3D/2D Registration 

Recently, statistical shape models based non-rigid 3D/2D registration has drawn a lot 
of attentions [7, 8, 9, 15]. Basically there are two ways to optimize the solutions: (1) 
do it directly on the images [15]; and (2) convert it to a non-rigid 3D/3D registration 
problem [7, 8, 9]. Suffered from the noisy in the input images, the former solutions 
require a closer initialization. In this paper, we are interested in methods in the latter 
category. A common disadvantage of all published solutions in this category is that 
they all require an explicit contour extraction as a prerequisite step, which can be 
quite difficult when the structure involved is complex or when the backgrounds of the 
X-ray images become complex.  

By combining the present 3D/2D correspondence building method with our re-
cently introduced 3D/3D surface reconstruction algorithm [16], a robust and accurate 
anatomy-based 3D/2D non-rigid registration algorithm has been developed. In the 
following section, the results of applying this algorithm to register statistical shape 
models of proximal femur to C-arm images of human cadaveric proximal femurs will 
be reported. 

8   Experiments 

We have performed experiments to evaluate the proposed method. For each case, two 
nearly orthogonal images are acquired. The acquired images are calibrated and regis-
tered using methods described in [2]. Results of both rigid and non-rigid 3D/2D regis-
tration are given. 

Rigid 3D/2D registration: A plastic vertebra was used for this study. Fiducial 
markers were implanted for computing the ground truth of the registration trans-
formation. Part of the registration procedure steps are shown in the top row of 
Figure 1 and the target registration error (TRE) calculated on those fiducial mark-
ers is 0.9 mm. 

Non-rigid 3D/2D registration: Eleven cadaveric proximal femurs were used for this 
study. Part of the non-rigid 3D/2D registration steps of one example are given in the 
bottom row of Figure 1. The non-rigid registration accuracies were evaluated by digi-
tizing 100 – 200 points from each surface of the cadaveric specimen and then comput-
ing the distance from those digitized points to the associated surface estimated from 
the images. The in-vitro experiments show a mean error of 1.2 mm (STD=0.2 mm), 
which demonstrates the robustness and accuracy of the proposed method. 
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Fig. 1. Results of anatomy-based rigid (top row) and non-rigid (bottom row) 3D/2D registration 
incorporating the proposed 3D/2D correspondence building method. First column, one of the 
acquired images; Second column: the initial state of the 3D models (green curves: the detected 
edge pixels; white dots: the extracted apparent contours). Third column: after establishing 
3D/2D correspondence. 3D Matched point pairs are linked with yellow line segments; Forth 
column: after 3D paired point matching. We apply the estimated transformation to the model 
and then re-calculate apparent contours; Fifth column: after re-establish 3D/2D correspondence; 
Sixth column: the final rigid (top) and non-rigid (bottom) registration results after a series of 
computations. 

9   Conclusions 

We have presented a novel 3D/2D correspondence building method and successfully 
applied it to both anatomy-based rigid and non-rigid 3D/2D registrations. The qualita-
tive and quantitative results demonstrate the validity of our proposed method. In the 
future, we will do more studies to evaluate its robustness. 
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Appendix: Proof of Claim 2  

Proof. Using proof by contradiction, let’s assume that ( s
iI , s

jA ) and ( s
mI , s

nA ) are two 

SIN’s and they also form a cross-matching and intersect at point O (Fig. 2). 
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Eq. (3) and (4) are contradictory to each other, i.e., ( s
iI , s

jA ) and ( s
mI , s

nA ) can not 

be two SIN’s and also form a cross-matching. This proves the claim 2

Fig. 2. Two SIN’s that also form a cross-matching 
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Abstract. Digital breast tomosynthesis combines the advantages of digital 
mammography and 3D breast imaging. To facilitate the comparison of new 
tomosynthesis images with previous mammographic exams of the same 
woman, there is a need for a method to register a mammogram with tomo-
synthetic images of the same breast; this is the focus of our paper. We have 
chosen to approach this multimodality registration problem by registering a 
mammogram with individual tomosynthesis source projection images. In this 
paper, we analyzed the results of registering an MLO mammogram to nine 
tomosynthesis source projection images of the same breast. On average, we 
were able to compensate 90 percent of the per-pixel intensity differences that 
existed between the two images before registration. 

1   Background 

Early breast cancer detection requires identification of subtle pathological changes 
over time, and is often performed by comparing images from previous years. 
Projection mammography is considered the preferred screening modality for early 
breast cancer detection. However, diagnostic breast imaging is a multimodality task. 
Breast ultrasound is used for distinguishing cysts from solid lesions. Breast magnetic 
resonance imaging (MRI) offers functional information.  

Recent research efforts have focused on developing 3D x-ray breast imaging 
modalities. Several modalities have been developed, including stereomammography, 
breast tomosynthesis, and breast computed tomography (CT) [1-3]. These modalities 
combine the advantages of mammography and 3D image visualization. The recent 
development of contrast-enhanced breast tomosynthesis may additionally provide 
functional information [4]. Of the proposed 3D x-ray modalities, breast tomosynthesis is 
the most likely to replace mammography as a screening procedure, chiefly because the 
acquisition geometry is nearly identical to mammography. In current implementations 
of tomosynthesis, between nine and 48 source projection images are acquired of the 
compressed breast as the position of the x-ray focus is altered. The total dose used is 
comparable to the dose needed for a mammographic exam. The projection images are 
used in a limited-angle CT reconstruction to form a tomographic image set. Several 
reconstruction algorithms have been proposed, ranging from filtered backprojection to 
sophisticated iterative reconstruction techniques [1,2]. Tomosynthesis produces 
tomographic images of the breast in which a given anatomical plane is in focus while 
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anatomical structures above and below the plane are blurred to such an extent as to be 
essentially removed from the image. 

With the clinical introduction of tomosynthesis, it will be necessary for radiologists 
to compare tomosynthesis images with previous mammograms of the same women to 
detect subtle temporal changes in the breast. It will be also necessary to compare 
tomosynthesis data sets of the same patient taken at different times. The former 
comparison task, while of a limited lifespan, requires 2D-3D registration. The latter 
comparison could be approached by direct registration of the reconstructed data sets. 
Such a registration should take into account possible differences in reconstruction 
algorithms used for the two 3D data sets. Alternatively, this comparison can be 
approached as a 2D-3D problem, in which one registers the tomosynthesis source 
projection images from two exams. We can look at research in computer-aided 
diagnosis to support the choice of 2D-3D methods being used to process 
tomosynthesis images. Chan et al. [5] are using 3D processing methods for the 
detection of lesions in tomosynthesis data sets, while Nishikawa et al. [6] use separate 
processing of 2D source images.  

Our current research focus is on the registration of a mammogram and individual 
tomosynthesis images of the same breast. In this paper we present preliminary results 
obtained by registering an MLO mammogram and nine individual tomosynthesis 
source projection images obtained from one patient.  

2   Methods and Materials 

The problem of registering mammograms and tomosynthesis images can be approached 
in two ways. First, one could try to address directly the registration of a mammogram 
and a set of reconstructed tomographic images. This is a true multimodality registration 
problem. Consider the problem of finding the position in a tomographic data set which 
corresponds to a lesion identified in a mammogram. In this registration schema, one 
would need to analyze all reconstructed tomographic planes, since each plane contains 
only a subset of the tissue structures which are visible in the mammogram.  

Alternatively, one could initially perform the registration of a mammogram and one 
or more of the projection images; this is a 2D registration problem. Each projection 
image should contain basically the same tissue structures as the mammogram, with 
some variation in positioning, compression, and dose. This registration schema, 
applied in multiple projection images, would allow the lesion to be located in 3D from 
knowledge of the acquisition geometry. 

In this paper, we focus on the registration of the medio-lateral oblique (MLO) 
mammogram and the tomosynthesis source projection images of the same breast. In a 
companion paper, we analyzed the registration of the central source projection and the 
MLO mammogram [7]. The central projection is acquired in essentially the same 
MLO breast position, but with a reduced dose. The non-central projections are 
acquired with the same breast positioning and compression, but with the x-ray focus 
in different locations.  

At the Hospital of the University of Pennsylvania, tomosynthesis projection images 
are acquired on a Senographe 2000D (General Electric, Milwaukee, WI) which has 
been modified to allow independent motion of the x-ray tube head. The x-ray tube can 
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be reproducibly positioned at nine locations, each separated by 6.25 degrees. In the 
current system the collimator variably occludes the detector (see Fig. 1). Each breast 
is compressed in an MLO position. The projections are acquired at a total dose equal 
to the dose of two-view mammography. Tomographic images are reconstructed, in 
planes parallel to detector, using a filtered backprojection algorithm.  

 

MLO mammogram          K=1                      K=2                        K=3                       K=4

K=5:  Central               K=6                      K=7                        K=8                         K=9 
      Projection     

Fig. 1. The clinical images used for the registration of an MLO mammogram (upper left) and 
the tomosynthesis source projection images (K=1,...,9) of the same breast. The images were 
acquired the same day by the same technologist, with nearly the same breast positioning. The 
mammogram and the central projection (K=5) were acquired with the same geometry, but with 
different dose. The non-central projections (K 5) were acquired with different x-ray focus 
locations.  

We use a non-rigid method to register the MLO mammogram and the tomosynthesis 
projection images of the same patient. The registration method combines intensity- and 
contour-based constraints to match regions of interest (ROIs) in the source and target 
images [8]. The registration task is formulated as the inverse problem of finding a 
geometric deformation that minimizes an energy function with free boundary conditions. 
The energy function includes three constraints designed (i) to prevent ill-posed solutions 
by regularization, (ii) to compensate for linear variations in image intensities, and (iii) to 
correct the initial mapping of the ROI in target image onto the corresponding ROI in 
source image. Before the registration, the ROIs in the source and target images were 
identified as the breast regions without the pectoral muscle. The pectoral muscle area was 
identified as the region above the line defined by two manually selected points on the 
muscle contour. In addition, the region occluded by the collimator were manually 
identified in each tomosynthesis projection image, and replaced by pixels of zero 
intensity; the same region in the mammogram was also replaced by pixels of zero 
intensity.  
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In this study, we registered the two images by deforming the mammogram to 
match the individual tomosynthesis projections of the same breast. The non-rigid 
registration method was performed in two steps. First, an initial registration was 
performed, based on the contour matching only. This initial step is followed by the 
corrections of the differences in the pixel intensity distribution between the target and 
source images. Detailed description of the registration method is given in our previous 
publications [8]. In an evaluation using synthetic images generated with a software 
breast model [9], an average displacement error of 1.6 mm was obtained for 
mammograms with compression differences of up to 3 cm. [10]. This is acceptable, as 
we have observed that the compression difference between mammography and 
tomosynthesis is approximately 1 cm.  

To date, 51 clinical breast tomosynthesis exams have been performed as a part of 
an IRB approved clinical study in our institution. After providing informed consent, 
each patient in the study also received digital or film-screen mammography on the 
same day. As a result, there are only a few, specific variations that can exist between 
the images (see Fig. 1). This is of importance for initial testing of the registration 
methods because no temporal changes in the breast tissue will have occurred.  

We evaluated the registration results by calculating the percentage of corrected 
differences, PCQD, defined as:  

PCQD = [ ij(
2

ij)
PRE - ij(

2
ij)

POST] / ij(
2

ij)
PRE × 100% (1) 

where ( 2
ij)

PRE and ( 2
ij)

POST represent the quadratic differences between the 
intensities of the pixels at position (i,j), before and after registration, respectively. 
( 2

ij)
P = [M(i,j)P-TK(i,j)]2, (K=1,...,9), where M(i,j)P represents the intensity of the 

pixel at position (i,j) in the mammogram, before (P=PRE) or after (P=POST) 
registration, and TK(i,j) represents the intensity of the pixel at position (i,j) in the Kth 
tomosynthesis projection. The higher PCQD values indicate the better registration 
performance. We also compared the root-mean-square (RMS) difference between the 
mammogram and the projection image, computed before and after registration: 

RMS Image Difference = [ ij(
2

ij)
 P]1/2, (P=PRE, POST). (2) 

3   Results 

Fig. 1 shows the mammogram and the nine tomosynthesis source projection images 
acquired from the analyzed case. Fig. 2 focuses on the registration of the 
mammogram (upper left) to one of the tomosynthesis source projection images (upper 
right). The selected projection image is labeled K=2 in Fig. 1. The registration result 
(middle image) is shown in the form of a mammographic image non-rigidly deformed 
to match the tomosynthesis source projection. We have evaluated the registration 
performance using the difference images shown in the lower row of Fig. 2. The 
difference images were computed before (lower right) and after (lower left) 
registration.  
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Fig. 2. Illustration of the registration of a mammogram and tomosynthesis source projection 
image of the same breast. The upper row shows the registration image pair: a mammogram 
(left) to be registered onto a tomosynthesis projection image (right); projection K=2 (Fig. 1) 
was used. The registration result is shown in the middle row.  The lower row shows the 
difference between the mammogram and the source projection, computed before (left) and after 
(right) registration. 
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Fig. 3. (a) RMS differences between the mammograms and individual tomosynthesis source 
projections of the same patient, computed before and after registration. The RMS image 
differences for each of the nine tomosynthesis projections are indicated by numbers 1-9; solid 
and bold numbers correspond to the differences computed after the initial and complete 
registration, respectively. The corresponding linear regressions are plotted by the dashed and 
bold lines, respectively. (b) RMS image differences as a function of x-ray focus location 
corresponding to different source projections.   
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We have registered the mammogram to all nine tomosynthesis source images. 
Using the difference images we computed the PCQD measure of the registration 
performance, defined in Eq. (1), after the initial registration and after the complete 
registration. The average values of PCQD ± one standard deviation, were equal to 
58±4% and 90±4%, after the initial and complete registrations, respectively. 
Fig. 3(a) shows a plot of the RMS differences between the mammograms and 
central tomosynthesis projections, computed before and after non-rigid registration. 
The slope values of the linear regressions computed after the initial and the 
complete registration are equal to 0.13 and 0.10, respectively. Fig. 3(b) shows the 
RMS images differences values as function of the tomosynthesis source projection 
image label K.  

4   Discussion 

We have chosen to approach the registration of a mammogram and a tomosynthesis 
data set of the same breast, starting from the simpler problem of registering a 
mammogram and the individual tomosynthesis source projection images. The 
mammograms and tomosynthesis images were acquired on the same day by the same 
technologist, thus having minimal variations.  

The computed average PCQD values are consistent with those computed in our 
study of non-rigid registration of mammograms and central tomosynthesis projections 
from 15 clinical breast image pairs [3]; in that study we computed the average PCQD 
values before and after registration of 52±20% and 94±3%, respectively.  

Fig. 3 suggests that the image differences computed after the registration show 
relatively low dependence on the differences computed before the registration; the 
slope of the linear regression corresponding to the complete registration, shown in 
Fig. 3(a), is equal to 0.10. This result is also comparable to that obtained in our 
analysis of the registration of mammograms and central tomosynthesis projections 
[3]; the slope of the linear regression in that study was equal to 0.20.  

Fig. 3(b) shows a variation in the RMS image differences computed before 
registration as a function of the tomosynthesis source projections (i.e. different x-ray 
focus locations). Ideally, assuming no changes in breast positioning, the minimum 
RMS image difference between the mammogram and the tomosynthesis source 
projection image should correspond to the central source projection (labeled K=5). 
Tomosynthesis projection images acquired with a larger angle to the central 
projection should result in an increased image difference. In Fig. 3(b), the minimum 
image difference is observed for the source projection K=6. The observed variation is 
not significant. Small changes in breast positioning between the mammography and 
tomosynthesis exam could cause this observation. Another possibility is that the 
calculation of the RMS image difference is sensitive to the variable occlusion of the 
detector (see Fig. 1). This latter issue is resolved in a new Senographe DS digital 
mammography machine (General Electric, Milwaukee, WI), optimized for the use in 
tomosynthesis, which is being installed in our department.  
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5   Conclusions 

We performed a non-rigid registration of a clinical MLO mammogram with nine 
tomosynthesis source projection images of the same woman. Individual tomosynthesis 
source projection images were acquired at different positions of the x-ray tube, each 
separated by 6.25 degrees. The mammograms and tomosynthesis images were acquired 
on the same day by the same technologist, thus having minimal variations. We evaluated 
the registration performance by computing the percent corrected quadratic differences 
between the mammogram and the central tomosynthesis projection. On average we were 
able to compensate 90 percent of the per-pixel intensity differences that existed between 
the two images before the registration. In this paper, we evaluated the registration 
performance based on the pixel intensity differences computed from clinical images of a 
single patient. We are currently expanding this work to include more patients and to 
evaluate the registration results based on the average displacements of manually or 
automatically extracted fiducial points.  
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Abstract. In this paper we are concerned with elastic medical image
registration. By spatially varying parameters, a displacement field can
be reached which is adapted to local material properties. In addition,
it enables the introduction of discontinuities within the displacement
field inbetween different anatomical structures, like bones and soft tissue.
The capability of this approach is demonstrated by various academic
examples.

1 Introduction

Nonrigid image registration is a challenging field of growing importance in med-
ical imaging. The task is to find a vector field of displacements such that each
point in a template image can be mapped onto a corresponding point in a ref-
erence image in a ‘meaningful’ manner.

By the notion ‘meaningful’ often a type of constraint is meant which both
preserves the topology and prescribes identical elastic properties throughout the
image domain. However, there exist several cases where changes in topology are
essential and/or where anatomical structures behave different from each other.
For instance, structures which are connected in one image may be disconnected
in the other image, like the brain-skull interface subject to a brain shift. Further-
more, structures may move along each other and thereby causing discontinuities,
like the liver or a joint and their surrounding tissues. In addition, soft tissue is of
different elasticity compared to bone structures and therefore behaves different.
Also, preservation of shape or volume may be a reasonable property.

Typically, the wanted displacement is computed subject to a smoothness con-
straint. For example, the constraint is realized by a regularization based on the
linear elastic potential of the displacement. In general, the constraint is applied
globally with one global regularization parameter and – for the elastic regular-
izer – with elastic properties independent from the image position. Usually, such
a method provides satisfactory results due to the underlying physical model.
Nonetheless it fails in cases described above, since a global regularization does
not allow for any local changes in topology or material properties. Therefore, in
this note a ‘meaningful’ transformation enables changes in topology, supports
local material properties, possibly approximates a shape or volume preservation
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and requires, to this end, a locally varying regularization. As a consequence, fur-
ther a priori knowledge has to be added. This can be achieved by a segmentation
of the template image only.

In the literature one can find several attempts dealing with nonrigid image
registration in conjunction with spatially varying regularization or material pa-
rameters, for example the radial basis functions [1], the Bezier tensor product [2],
the B-spline with subsequent filtering [3], the damped springs [4], the finite ele-
ments [5, 6, 7] or the finite differences [8] based approaches, respectively. However,
these methods either do not reflect the physical behavior of the underlying ma-
terial, or the registration yields a smooth transformation field, allowing for no
discontinuities at all.

In [9, 10] we briefly introduced a new approach which overcomes the above
mentioned shortcomings. In this note we extend the new idea and describe the
method in greater detail. The following section is concerned with its mathemat-
ical formulation whereas Section 3 addresses the numerical treatment. Finally,
we demonstrate its advantages by application to academic examples.

2 Variational Approach

Let R, T : Ω → G denote the reference and the template image, respectively.
Here, G denotes a set of gray values and Ω ⊂ R

d the d-dimensional image
region. In addition, let a meaningful segmentation of T be given. That is, a
decomposition of Ω into disjoint regions Ωl is assumed, such that Ω = ∪m

l=0Ωl.
For convenience, let Ω0 denote the background of image T .

The registration aims at finding a displacement field u : Ω → R
d such that

Tu := T (id + u) is similar to R, where id denotes the identity mapping. In
mathematical terms, the similarity is described by a functional D[u; T, R]. D
can be chosen as any popular distance (or similarity) measure provided its
Gâteaux derivative exists. However, this note is restricted to the common sum
of squared differences, D[u; T, R] =

∫
Ω[R(x) − Tu(x)]2dx =:

∫
Ω LDdx, which

assumes monomodal images.
A registration based on a similarity measure only, may yield a deformed tem-

plate image which perfectly matches the reference image as long as all gray values
are present in both images. However, the problem is ill-posed and the underly-
ing deformation does in general not make sense in a physical context. Therefore,
an additional smoothness constraint (or regularizer) is considered which can be
chosen to model the application specific physical properties. Also, it may be
interpreted as a penalizer. In this note we investigate a regularizer based on
the popular linear elastic potential which is in addition equipped with spatially
varying parameters (the so-called variable elastic regularizer),

S[u; α, λ, μ] =
∫

Ω

αu

(
μu

4

d∑
i,j=1

(∂xj ui + ∂xiuj)2 +
λu

2
(∇ · u)2

)
dx =:

∫
Ω

LSdx,

where αu, λu and μu are defined in analogy with Tu. For other regularizers
including diffusive-, fluidal- or curvature-based approaches we refer to, e.g., [11].
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In contrast to a conventional approach, where α, λ and μ are global con-
stants, all the three parameters are assumed to be spatially dependent. Here,
the positive weighting function α : Ω → R

+ describes the local influence of the
regularizer. By knowing the segmentation of the template image we are now in a
position to reduce the regularization of the displacement field locally and, there-
fore, to allow for local changes in the topology. To this end, α � 1 is set in the
background region Ω0, cf. [10]. The Lamé parameters λ, μ : Ω → R

+ are used to
reflect the material properties. From a qualitative point of view, μ is inversely
proportional to the elastic modulus and λ/μ is proportional to the incompress-
ibility of the material. For a detailed interpretation and a comparison of values
for specific anatomical structures used in the literature we refer to [7]. Again, by
exploiting the segmentation of T , different elastic properties can be assigned to
each subdomain Ωl. Thereby diverse elastic behavior of different materials, like
bones and muscles, can be simulated.

Note, that αu, λu and μu depend on the displacement u. This dependency is
indispensable due to the fact that nonlinear registration approaches mostly em-
ploy an iterative scheme and therefore the material properties at a fixed position
do change in the course of the registration. As a consequence, the parameters at
an intermediate stage can be deduced from u applied to the initial setting which
makes a segmentation of the reference image redundant.

By combining the similarity measure and the regularizing term, the problem
is to find a displacement field u which minimizes the joint functional

J [u] := D[u] + S[u] =
∫

Ω

LDdx +
∫

Ω

LSdx. (1)

The computation of the Gâteaux derivative of (1) yields a necessary condition
for u∗ being a minimizer of (1),

∇uLD + ∇uLS − ∇∇uLS = 0.

Here, ∇u refers to the gradient with respect to (u1, . . . , ud) whereas ∇∇u de-
notes the gradient with respect to the Jacobian of u. The outcome is a system
of nonlinear partial differential equations equipped with associated boundary
conditions,

Au + g(u) + f(u) = 0 on Ω,

∂ui

∂n
= 0 on ∂Ω, i = 1, . . . , d,

(2)

where f (u) := −(R−Tu)∇Tu results from differentiating the similarity measure
and is therefore independent from the choice of a regularizer. For the variable
elastic regularizer a straightforward calculation yields

Au := −∇ · [αuμu(∇u + ∇Tu)] − ∇[αuλu∇ · u] and

g(u) :=
1
4

d∑
i,j=1

(∂xj ui + ∂xiuj)2∇[αuμu] +
1
2
(∇ · u)2∇[αuλu].

(3)
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Here, we collected terms with a linear dependency on u or on its derivatives in
Au and those with a nonlinear dependency in g(u). This allocation will become
handy in the numerical treatment. Note that Au = g(u) + f(u) corresponds
to the Navier-Lamé equations. The boundary conditions in (2) are of Neumann
type but clearly they may be chosen problem dependent.

3 Numerical Treatment

By introducing an artificial time variable, (2) can be linearized as

(id + τA)u(k+1) = u(k) − τf (u(k)) − τg(u(k)), (4)

where u(k+1) := u(x, tk+1) = u(x, tk + τ) and u(0) ≡ 0. Due to the allocation
into A and g, the differential operator id + τA is linear.

The system of partial differential equations (4) can be discretized on a stag-
gered grid using second order finite differences yielding a d × d block matrix. It
turned out to be reasonable to discretize (3) without evaluating the divergence
operator first. Otherwise the matrix will be non-symmetric for varying parame-
ters. As a consequence, the discretized form of (3) requires the evaluation of α, λ
and μ on interlaced grid positions. Whereas λ and μ could be interpolated either
on a full- or on a half-integer grid, the definition of α on a half-integer grid is cru-
cial. For example consider two adjacent anatomical structures. A displacement
independently chosen for both structures requires a reduced regularity inbetween
(i.e. a thin gap of background region). By defining α on the full-integer grid, a
separate row (column) would be needed to incorporate the reduced regularity.
When coarsening the scale the same row (column) would still be needed be-
coming more and more dominating compared to the size of the adjacent image
structures. In contrast, defining α on a half-integer grid does not increase the
dominance of the gap and is therefore recommended for a multiscale approach.
However, a minimum gap size of inter-voxel width is required on the finest image
level.

For stability reasons, derivatives of g are approximated by the minmod slope
technique [12].

The arising system of equations is of size dN (N being the total number of
voxels in Ω). This system has to be solved at every iteration step. The system ma-
trix resembles the Navier-Lamé differential operator and includes the additional
information given by the segmentation and local parameters. The righthand-side
results from both the similarity measure and further derivative terms due to the
dependency of the parameters on u.

Finally, to evaluate the deformed template image Tu(x) and to build up the
linear system of equations for the following iteration step, interpolation for αu,
λu and μu is required.

From a theoretical point of view the variational approach and its numerical
treatment is suitable for any dimension. However, in this note we only report
on results for the more instructive 1D and 2D cases. For a practical treatment,
multiresolution and multigrid techniques are advisable.
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4 Results

The proposed method has been applied to various academic images. Note that
in 1D the variable elastic regularizer simplifies to a variable diffusive regularizer,
cf. [10].

1D gap example. In order to outline some fundamental properties of the new
approach we start with a 1D image consisting of five objects (cf. Fig. 1, top
left, for the template image). Each object (given by an interval with non-zero
gray values) belongs to a single region Ωl, l = 1, . . . , 5, which is encoded in the
segmented template image by assigning an integer value to each region (center
left). For the outer objects there is no change in position during transition from
the template image to the reference image (top of second column). The other
ones are designed, such that they do change their positions in such a way that
gaps between them show up or disappear. From the segmented template image
we deduce the values of the weighting function α (bottom left). By setting α
small in background regions we expect a displacement function which is constant
within each object and inhibits high gradients inbetween.

Fig. 1. The template image together with its segmentation and the deduced values for
α are shown in the first column (from top to bottom). The second column displays
the reference image (top), below the resulting displacement function (center) as well
as the transformed template image (bottom), Tu. In the upper right corner a modified
reference image with added 10% white noise is shown. It serves for the results of
the third and the fourth column where a varying α and a constant α are chosen,
respectively.

As it is apparent from the second column, the variable regularizer applied
with α(x) = 10 and α(x) = 0.01 inside and outside the objects, respectively,
nicely fulfills our expectations. The displacement function (center) indicates a
constant displacement within the objects with abrupt changes inbetween. Below
the transformed template image is depicted. For better comparison we added
the (undeformed) template image (dotted line) as well as the reference image
(light gray; not visible here due to the coincidence with Tu). Note that a similar
result may be reachable when applying a constant but very small α. However,
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this problem is becoming more and more ill-posed the smaller α is and requires,
therefore, a smaller step size τ .

To test the proposed method for a more realistic setting, we modified the
reference image by adding white noise with a standard deviation of 10% of the
previous gray value scale (Fig. 1, top right). The template image and α remain
unchanged. The ideal displacement field for this setting remains the same as
with the unchanged reference image.

Now, the regularizer has been applied with both a varying (third column) and
a constant (fourth column) weighting function. Whereas the constant choice of
α = 0.03 leads to a dissatisfying result due to the presence of noise in the refer-
ence image, a variable weighting (same as for the second column) both supports
a noise-independent smooth displacement within the objects and enables for high
gradients in the gap regions.

2D rotation example. In the second example we consider the shape-
preserving feasibility of the variable elastic regularizer. To this end, a template
image with a square is given. A rotation by 30◦ yields the reference image,
cf. Fig. 2. Whereas in the first experiment all parameters are chosen constant, in
the second experiment μ is multiplied by 1000 in the square region. Although,
after the same number of iterations, both transformed template images almost
match the reference image, the varying parameter case (cf. Fig. 2, right) is clearly
preferred.

Fig. 2. Template (left) and reference image (center left) are displayed together with
visualized displacement fields for a constant μ (center right) and a spatially varying μ
(right)

2D phantom image. The last example considers a 2D phantom image (Fig. 3,
top left) consisting of three objects: a rectangular object representing, for in-
stance, bone structure, a square object modelling some soft tissue and in its
inside a circle object taking the role of, for instance, a tumor. For the transi-
tion from the template to the reference image (Fig. 3, top right) we model a
shrinking of the tissue object without affecting the bone object, which is usually
a problem in registration approaches. The second problem regards the behavior
of the circle object. Due to its invisibility in the reference image a conventional
registration approach will tend to shrink its size in order to relate it as much as
possible to a circle of zero size.
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Fig. 3. Below the template and reference image (first row), the results from four dif-
ferent settings are depicted columnwise with respect to Tu (second row), the overlayed
displacement field (third row; data are thinned out for better recognition) and the
volume preservation indicator |1 + ∇u| (last row), cf. text for further details

The variable elastic regularizer has been employed with four different param-
eter settings. For the first setting, all parameters are constant (α ≡ 0.1, λ ≡ 0.1,
μ ≡ 4), cf. the first column of Fig. 3. For the remaining settings α is reduced
locally for all background regions (α = 0.015). In addition, for the circle object μ
(cf. third column) and λ (cf. fourth column) are multiplied by 1000, respectively.

The resulting deformation fields have been compared with respect to the
deformed template image (second row in Fig. 3) and for a zoomed region around
the square object with respect to the displacement field (third row) and the
quantity |1+∇u| (last row). Here, a volume preserved region (corresponding to
|1 + ∇u| = 1) is depicted by medium gray, whereas a contracting (expanding)
region appears in light gray (dark gray).

Recalling the first problem, the shrinking of the tissue object without affect-
ing the bone object works properly whenever the weighting of the regularizer
is small inbetween (second to fourth column). For the second problem several
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observations can be made. With no further material knowledge the tumor ob-
ject is shrinked (reduction in volume is 30%), indicated by a light gray of the
circle object in the bottom row. With a large μ or λ either a shape (and vol-
ume) preservation (third column) or an approximated volume preservation only
(fourth column) can be seen. For both cases the change in volume is less than
0.3%.

5 Conclusion and Discussion

We have proposed an elastic potential based registration approach with displace-
ment dependent parameters. It has been shown that this approach enables one to
incorporate pre-knowledge, for instance the knowledge of anatomical structure or
material properties. Whereas a proper choice of the local influence of the regular-
izer may lead to a discontinuous displacement field in order to model topological
changes, different choices for the material parameters allow to mimic different
elastic properties. Clearly, exact values for the parameters are not known in
general and, usually, are guessed for in vivo situations [7].

Compared to our previous results, now, the segmentation of the template
image only is sufficient. This is an important issue for time-critical tasks, like
brain-shift, since an (often time-consuming) segmentation is required for the
pre-operatively generated image only.

However, as a consequence from skipping the intra-operative segmentation,
adjacent anatomical structures require, in order to diverge, a minimum gap of
inter-voxel width inbetween. We are currently working on omitting this draw-
back.
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Abstract. This article tackles the registration of 2-D biological images
(histological sections, autoradiographs, cryosections, etc.). The large va-
riety of registration applications – 3D volume reconstruction, cross-dye
histology gene mapping, etc. – induce an equally diverse set of require-
ments in terms of accuracy and robustness. In turn, these directly trans-
late into regularization constraints on the deformation model, which
should ideally be specifiable in a user-friendly fashion.

We propose an adaptive regularization approach where the rigidity
constraints are informed by the registration application at hand and
whose support is controlled by the geometry of the images to be regis-
tered.

We investigate the behavior of this technique and discuss its sensitiv-
ity to the rigidity parameter.

1 Introduction

A key component of medical image analysis, image registration essentially con-
sists of bringing two images, acquired from the same or different modalities, into
spatial alignment. This process is motivated by the assumption that more infor-
mation can be extracted from an adequate merging of these images than from
analyzing them independently. Its use covers a wide variety of applications, from
building anatomical atlases, to longitudinal studies of tumor growth or other dis-
ease processes, through surgical planning and guidance (see [1] for a thorough
overview).

More formally, given two input images, registering the source (i.e., movable)
image to the target (i.e., fixed) image entails finding the transformation that
maximizes the similarity between the transformed source image and the target
one.

Motivation. In addition to the selected image features used to measure the
adequacy of a match between two images (e.g. comparison of intensities for
intensity based registration approaches, anatomically meaningful invariants such
as structure boundaries for geometric techniques, etc.), another pivotal axis put
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forward by most registration taxonomies is the choice of a deformation model.
This model acts as a regularizing scheme and embodies a priori information
about the registration problem at hand.

Namely, in view of the characteristics of the images to be registered (less than
ideal signal-to-noise ratio, tessellated structure, etc.) and of the inherently local
nature of the process estimating point motions, a regularization scheme is re-
quired, both to discipline an otherwise unruly displacement field and to enforce
application-dependent (i.e. user defined) constraints. In this latter respect, the
selection of a suitable deformation model is crucially informed by the objectives
of the medical application. For instance, in a tumor tracking system, the regis-
tration accuracy truly matters only in the region of interest defined around the
identified tumor whereas the registration must be accurate everywhere in the im-
age when building an anatomical atlas. Also of pivotal importance is the nature
of the registration process. Typically, as pointed out in [2], actual anatomical
deformations should not be accounted for in the same manner as variations in-
duced by the intrinsic characteristics of the imaging modalities. For instance, the
actual physical displacements generated by the growth of a tumor are different
in nature from the artificial chemical shifts observed in MR, which,though only
an artefact of measurement, induce an actual displacement in the image.

Essentially, we can identify two ways of controlling the rigidity of the deforma-
tion model, either directly by constraining the number of degrees of freedom of
the selected transformation, or indirectly via regularization of the displacement
field. We focus here on regularization approaches as they are more versatile in
nature (i.e. a larger variety of transformations can be modeled within the same
framework).

Among many others, we find, on the local end of the regularization spectrum,
the optical flow method of Lucas and Kanadé [3] which computes a weighted
average displacement in a small window centered around each pixel. In direct
line with optical flow, the Demons algorithm [4] uses Gaussian filtering over a
specifiable neighborhood. Noting that linear elastic models do not necessarily
preserve image topology for large displacement, Christensen et al. [5] proposed
a physics inspired viscous fluid model to enforce topological constraints within
a partial differential equation framework. In Pitiot et al. [6], histological sec-
tions were automatically segmented into smaller components which were then
registered independently, thereby implementing an anatomically guided regional
regularization. On the other end of the spectrum, Barber [7] estimated a global
affine transformation in a least-square sense from a correspondence field com-
puted at each pixel to register pelvic scintillographic images. In Ourselin et al.
[8], the use of M-estimators helped recover a global rigid or affine transforma-
tion in a robust fashion and reconstruct 3-D histological volumes. M-estimators
were also selected by Hellier et al. [9] to deal with the inherent heterogeneity
between relevant and inconsistent data on the one hand and neighborhoods with
a smooth or discontinuous expected field on the other hand. They used an adap-
tive multri-grid multi-resolution system to register T1-weighted MRIs. Similar
in spirit to our approach, Feldmard et al. [10] estimate a local rigid or affine
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transformation in a sliding sphere to regularize the displacement field computed
between two surfaces in 3-D.

Clearly, both the shape (in particular the size) of the neighborhood over which
the regularizing process is applied and the nature of this process should vary as
a function of the application. A common requirement of histological section reg-
istration problems is that of adequately matching the main anatomical features
without inducing unsightly and biologically improbable tissue distortions. Still,
as argued above, the desired rigidity of the registration process depends on the
envisioned application. On the one hand, when reconstructing a histological vol-
ume, the overall transformation must remain sufficiently rigid not to induce
anatomically spurious alignments in the reconstructed volume. Indeed, these
would not be compatible with the anatomical reference, usually an MR image,
to which it will be subsequently registered. On the other hand, when registering
slices which underwent different histological treatments to reveal different ge-
netic characteristics, the transformation space should be sufficiently flexible to
allow for the resolution of local variations in fine geometrical details.

Adaptable Rigidity. Classical techniques usually offer only limited, and often
indirect, control over the characteristics of this regularization process. More over,
little if any information intrinsic to the images is taken into account. For instance,
most piecewise techniques will subdivide the input images into rectangular areas
which makes little anatomical sense.

In this article, we propose a regularization approach whose rigidity is informed
by the registration application at hand and whose shape is controlled by the
geometry (or topology) of the images to be registered. Such approach enables us
to tackle a variety of registration tasks with the same generic framework.

We detail the regularization (and registration) methods in Section 2 and dis-
cuss some histological registration results in Section 3, along with the sensitivity
of our algorithm to regularization parameters.

2 Method

To illustrate the efficacy of the proposed regularization approach, we imple-
mented it within a classical nonlinear registration framework where B-splines
were used to model the transformation space and the displacement field to be
regularized was estimated with a block-matching algorithm.

This registration framework consists of a three phase, iterative process. First,
a block-matching algorithm estimates a displacement field between the source
and target image (Section 2.1). The field is then regularized with our method
(Section 2.2). Finally, the regularized field is fed to the B-spline coefficients and
the source image is resampled. This process is iterated a number of times, usually
between 2 and 10 times depending on the required amount of deformation. Note
that as a pre-processing step, we first globally affinely register the input images
(see Section 3).
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2.1 Block-Matching Field

We associate with the source image, IS , a rectangular lattice, LS , whose sites
correspond to pixels in IS . We consider a sparse regular site distribution, usually
one site every 10 pixels, and discard sites which lay on the background as they do
not correspond to actual tissue (a simple thresholding algorithm proved sufficient
for histological data).

In a nutshell, for each site s in LS (around which we define a rectangular
neighborhood of pixels, bs

S , called a “block”), the block-matching algorithm de-
termines the block btmax

T of the target image in an exploration neighborhood
N(s) centered on s which maximizes a given similarity metric inside that neigh-
borhood: tmax = arg max

t∈N(s)
similarity(bs

S, bt
T ). The displacement at s is then

given by: d(s) = centroid(btmax

T ) − centroid(bs
S) (see [6] for details).

The resulting displacement field is essentially determined by three parame-
ters: the size of the blocks, the similarity metric and the size of the exploration
neighborhood in LR. The chosen similarity metric and the size of the blocks must
fit the expected relationship between the intensity distributions of blocks in the
source and target images, and the scale of the features of interest within those
blocks respectively (see [11]). We chose the constrained correlation coefficient as
a similarity metric since it offers a more appropriate block-matching computa-
tion than the conventional version [6]. The size of the exploration neighborhood
is linked to the expected magnitude of the residual displacements after global
alignment. It conditions the extent to which our registration algorithm can re-
cover large deformations: the further apart corresponding components are, the
larger the size of the neighborhood must be.

2.2 Rigidity Adaptable Regularization

As argued in the introduction section, the local nature of the pixel motion com-
putation and the characteristics of the input images both contribute to a noisy
estimated displacement field which requires subsequent smoothing. We propose
to cut the regularization neighborhood to fit the geometry of the images, which

Fig. 1. Illustration of the rigidity adaptable regularization: (a) input noisy displace-
ment field; (b) geometrical neighborhood around selected site; (c) estimated affine
transformation applied to selected site; (d) regularized displacement field
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Fig. 2. Geometrical vs. non-geometrical regularization: (a) input source image with
edges of target image and block-matching field superimposed (vectors are rescaled);
(b, c & d) various displacement field regularized over geometrical or non-geometrical
neighborhoods and corresponding registered source image (see text for details)

also enables us to craft a regularization parameter with more intuitive anatomical
semantics.

The geometry of the source image is exploited by distinguishing between pixels
belonging to actual tissues and background ones (which correspond to the glass
slide supporting the tissues for histological sections, the embedding medium for
cryosection, etc.). Given a site s in LS, we build the list of sites at distance R from
s such that the line segment that links them does not intersect the background of
the source image. That is, we only include topological neighbors. A robust least
square regression algorithm (Least Trimmed Squares) is then used to estimate a
rigid or affine transformation T from the displacement vectors associated with
the neighbor sites. At a glance, a LTS estimator differs from a conventional
least square method by iteratively minimizing the sum of the h smallest squared
residuals, to reduce the influence of outliers [12]. We set h at 70% of the number
of residuals. The original displacement vector at s is then replaced by T (s) − s.
This process is repeated for every site in LS (see Figure 1).

By varying the regularization radius R between 0 and +∞, we control the
rigidity of the regularized displacement field, and hence, that of the transforma-
tion. A null radius corresponds to a fully flexible transformation, while R = +∞
yields a globally rigid transformation (or a set of rigid transformations when
the image consists of multiple connected or semi-connected components, see
Section 3). Furthermore, given that the topological neighborhoods associated
with topologically adjacent sites are very similar, the estimated transformations
will also be very similar, ensuring smooth transitions throughout the image.

Figure 2 illustrates this technique on the regularization of a displacement field
computed on either side of a gap between the cerebellum and the cerebrum in a
small piece of a calbindin-stained mouse brain sagittal slice. The source image
was obtained from the target image by applying a left and a right translation on
either side of the gap. When both sides of the gap were taken into account, local
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affine estimation incorrectly yielded a compression (b). A rigid (instead of affine)
estimation would have given a global left or right translation depending on which
side contained the largest number of blocks, as did a Gaussian filtering approach
with large standard deviation (c). However when both sides were considered
independently (d), the estimated transformations were the correct left and right
translations.

3 Results and Discussion

We tested our regularization technique on a series of 10 calbindin-stained his-
tological sections of the left hemisphere of a transgenic mouse brain (600 × 400
pixels downsampled from 6000 × 4000). Figure 3(a & b) shows the source (#6)
and target (#7) sections Note that in addition to the 0.7mm gap in between
slices which made for substantial anatomical differences (for instance, the ol-
factory bulb suddenly appears in the target section), tears also induced large
pictorial discrepancies.

Registration consisted of a global affine registration (R = +∞) followed by
3 iterations (blocks: 20 × 20 pixels, exploration neighborhood: 80 × 80 pixels,

Fig. 3. Geometrical regularization results: (a) source image; (b) target image; registered
source image with superimposed target edges: (c) global affine registration, R = +∞;
(d) local rigid registration, R = 100; (e) local affine registration, R = 100; (f) local
affine registration, R = 20; (g) local affine registration, R = 5
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B-spline control points every 10 pixels) with the specified R. By varying both
R and the nature of the locally estimated transformation (affine or rigid), we
can control the characteristics of the registration. In Figure 3(d), locally rigid
transformations were estimated over a large topological neighborhood (R = 100
pixels). Note in particular how the cerebellum gyri of the source section (iden-
tified as g1 − g5 in (a) ) were correctly repositioned. Yet, they did not quite fit
inside their counterparts in target section, which was to be expected since their
actual shapes and sizes had changed in between. A better match was obtained in
(e) where affine transformations were estimated instead of rigid ones. This how-
ever came at the price of a large distortion in g3 (see black circle in (d) ). An even
more accurate correspondence was obtained in (f) (local affine transformations,
R = 20 pixels): the major structures are perfectly aligned and so are most of the
cerebellum gyri. The remaining discrepancies (gyri g4, g5 and circled regions in
(f) ) again represent actual anatomical differences. Even though a more flexible
transformation (R = 5 pixels in (g) ) virtually eliminates them, it also induces
unpleasant distortions as the tissues are forced to stretch.

Choosing R. As illustrated above, the choice of R is pivotal. We submit that it
should be conditioned both by the application at hand and by the characteristics
of the input images. For instance, if a 3-D volume were to be reconstructed from
the calbindin sections, a large value of R should be selected (R = 100 with
affine or rigid for instance) so as not to induce in the reconstructed volume the
artificial distorsions we observed in Figure 3(g). Conversely, in a genetic study
interested in the correlation between the expression of two different proteins or
markers (typically even and odd sections will then be treated differently to reveal
different proteins or genetic markers), a small R should be preffered as we would
like the gyri to match as best as possible.

In our experience, a good choice for R is of the order of the size of the smallest
structure we wish to match across images without altering its shape. Indeed, the
use of a robust estimator (LTS) then ensures a relatively constant transformation
to be computed inside this structure if the cut-off is sufficiently high (close to
50%).

Note that often the input images to be registered are not homogeneous in the
shape or in the distribution of the structures they contain. For instance, the cal-
bindin sections include both a highly convoluted cerebellum and a less complex
cerebrum. Even better registration results can then be achieved by adapting the
selected R to the local geometry in the image. Preliminary results indicate that
a good strategy consists in modulating the user-supplied R value by an edgeness
measure (gradient magnitude) in a neighborhood the size of R. Furthermore,
the main edges can also be used to distinguish between anatomically significant
neighborhoods in addition to background pixels.

4 Conclusion

We have presented a regularization technique which estimates a rigid or affine
transformation over a neighborhood whose size is specified by the user and whose
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shape depends on the geometry of the input images. This offers a less arbitrary
control over the rigidity of the registration process. As opposed to standard piece-
wise techniques which impose a grid-like structure on the transformation space
(i.e. the piecewise areas are rectangular), this approach defines more anatom-
ically meaningful regions in following the actual contours of the image, while
eliminating the need for pre-segmentation [6]. The use of a sliding window also
induces natural soft transitions between regions, except in areas where we expect
a discontinuous gap (i.e. across gyri). This enables the computation of arbitrar-
ily complex deformation fields while keeping their flexibility under control (i.e.,
the fields are only as flexible as they need to be), very much in the fashion of a
spatially adaptive fluid approach but with arbitrary shaped regions. Obviously,
a multi-resolution scheme would further improve the robustness of our method
by handling large displacements, at low resolutions, in a locally rigid fashion.

As mentioned throughout the paper, the choice of R, though it should not be
fully automatized as it must depend on the application, could probably bene-
fit from a priori medical expertise. We are currently developing new heuristics
to tackle this issue, in addition to the size-of-smallest-structure-of-interest one.
Along similar lines, a registration algorithm implementing our regularization
technique should implement an application-dependent stopping criterion as well
(if the registration process is iterative). Finally, we are also investigating auto-
mated and semi-automated ways to vary the regularization radius R as a func-
tion of the spatial position in the images to accommodate particularly damaged
sections and missing parts.

Acknowledgements

The authors would like to thank A. MacKenzy-Graham from the LONI labora-
tory for providing the mouse brain sections.

References

1. Maintz, J.B.A., Viergever, M.A.: A Survey of Medical Image Registration. Medical
Image Analysis 2 (1998) 1–36

2. Cachier, P., Bardinet, E., Dormont, D., Pennec, X., Ayache, N.: Iconic Feature
Based Nonrigid Registration: The PASHA Algorithm. CVIU — Special Issue on
Nonrigid Registration 89 (2003) 272–298
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Abstract. This paper presents a nonrigid image registration method for
cardiac deformation recovery from 3D MR image sequences. The main
contribution of this work is that the method is mathematically guaran-
teed to generate incompressible deformations. This is a desirable prop-
erty since the myocardium has been shown to be close to incompressible.
The method is based on an incompressible deformable model that can
include all four cardiac chambers and has a relatively small number of
parameters. The myocardium needs to be segmented in an initial frame
after which the method automatically determines the tissue deforma-
tion everywhere in the myocardium throughout the cardiac cycle. The
method has been tested with four 3D cardiac MR image sequences for
the left and right ventricles and it has been evaluated against manual
segmentation. The volume agreement between the model and the man-
ual segmentation exceeds 90% and the distance between the model and
the manually generated endocardial and epicardial surface is 1.65mm on
average.

1 Introduction

The motion of the heart wall plays an important role in the evaluation of the
heart condition. A number of image-based cardiac deformation recovery tech-
niques have been developed. Most of these methods use a specialized imaging
modality, including tagged MRI [1, 2], diffusion tensor MRI [3], DENSE MRI
[4], and phase velocity MRI [5]. These imaging modalities require extra acqui-
sition time in addition to the time required to obtain anatomical (cine) MRI,
which is always acquired. For this reason it is useful to have a cardiac defor-
mation recovery method that uses only anatomical MRI. Some of the relevant
methods [6, 7, 8, 9, 10] provide only the segmentation of the myocardium without
recovering the displacement field. This prevents one from computing myocar-
dial strains, which are critical for analysis of the cardiac function. In addition,
there are methods that track only the endocardial and epicardial surfaces [11, 12]
without computing the displacements within the heart wall. These methods also
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cannot be used to compute myocardial strains. Finally, it is desirable that the
method automatically recovers the myocardial deformation in all the frames of
the cardiac cycle, since manual interaction in all the frames is tedious and time
consuming [13, 14].

In this paper we present a method for 3D cardiac deformation recovery from
anatomical MR image sequences. The method computes the displacements ev-
erywhere within the heart wall which allows one to compute myocardial strains.
To initialize the method, one needs to segment the myocardium only in an
initial frame, after which the method automatically recovers the myocardial
deformation throughout the cardiac cycle. A byproduct of the method is an
automated segmentation of the myocardium in the entire image sequence. The
method is mathematically guaranteed to generate incompressible deformations.
This is a desirable property since the myocardium has been shown to be close
to incompressible. The method is based on an incompressible deformable model
that can include all four cardiac chambers and has a relatively small number of
parameters.

We also note relevant work on automated cardiac deformation recovery from
anatomical MR image sequences [15, 16, 17, 18], but these methods do not in-
corporate the incompressibility property of the myocardium and require more
parameters than our method. An almost incompressible biomechanical model of
the left ventricular wall was used for image-based cardiac deformation recovery
in [19]. This method is not automated, i.e. it requires manual interaction in all
the frames of the cardiac cycle. In [20], the incompressibility property is intro-
duced as a tradeoff in the objective function, and the method can only track the
endocardial and epicardial surfaces for the left ventricle (LV).

2 Methods

2.1 Incompressibility of the Myocardium

The myocardium is an almost incompressible material. Its constituents are
mainly composed of water, which is almost perfectly incompressible. However,
the myocardium is perfused with blood, which affects the total myocardial vol-
ume over the cardiac cycle. A few studies [21, 22, 23, 24] have been carried out
to quantify the change of the myocardial volume over the cardiac cycle. The
common conclusion of these efforts is that the total myocardial volume changes
no more than 4% during a cardiac cycle. This means that the myocardium is
not perfectly incompressible. However, this volume change is distributed in all
three directions. Even in the areas with predominant orientation of the blood
vessels, the myocardial tissue does not expand or contract by more than 2% in
any direction. Given that the thickness of the myocardium of the left ventricle
(LV) is up to 14mm [25] for a normal heart at end systole (ES), which is the
maximal thickness of the myocardium wall during the heart cycle, the compress-
ibility of the myocardium corresponds to a 0.28mm change in its thickness in
the worst case. This is negligible because the pixel size of the images is around
1mm. For this reason, one conclude that incompressibility is a physical property
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that has to be exactly or at least approximately satisfied for the modeling of the
myocardium. The 3D transformation model presented in this paper is directly
based on this property.

2.2 3D Incompressible Model Transformation

The goal of the method is to recover the 3D cardiac deformation from image
sequences. The user needs to manually segment the myocardium in one frame
of the sequence, called the reference frame, which is usually the end diastole
(ED) frame. This is the only user interaction needed. The transformation is
applied to the segmented myocardium of the reference frame. For each frame of
the sequence, the method computes a transformation that models the myocardial
deformation. The location of the myocardium in frame i is given by mi = Ti(m),
where Ti is the transformation from the reference frame to frame i, m = (x, y, z)
are the myocardium points in the reference frame, and mi = (xi, yi, zi) the
corresponding points in frame i.

Our transformation model follows the geometry of the heart. Let r(α, β) and
ri(α, β) represent a parametrization of the midsurface of a cardiac chamber in
the reference frame and frame i, respectively. The midsurface is defined here
as the surface exactly half way between the endocardial and epicardial surfaces.
Note that the two functions depend on the same parameters α and β. This means
that points r(α, β) and ri(α, β) correspond, i.e. they represent the same physical
point in the two frames. Let n(α, β) and ni(α, β) represent the surface normals
of the midsurface in the reference frame and frame i, respectively. A point in the
chamber wall in the reference frame that is at a distance γ in the surface normal
direction from the midsurface point r(α, β) is located at:

m(α, β, γ) = r(α, β) + γn(α, β). (1)

The corresponding point in frame i is at a distance γi in the surface normal
direction from the midsurface point ri(α, β), i.e. its location is:

mi(α, β, γ) = ri(α, β) + γi(α, β, γ)ni(α, β). (2)

Control points are used to represent the midsurface in the reference frame,
and their coordinates represent the parameters of the transformation model. The
location of the control points are automatically determined in the segmented
myocardium of the reference frame. They are located on the skeleton of the
myocardium on each slice of the 3D image. A pseudo thin plate spline interpo-
lation scheme is used to generate the midsurface of the cardiac chamber from
the control points [26]. The number of control points is chosen such that the
mean square difference between the generated midsurface and the skeleton of
the myocardium for each slice of the image is less than half a pixel. The cardiac
deformation recovery explained in Sec. 2.3 provides the locations of the control
points in each frame of the cardiac sequence. By using the same interpolation
scheme, we define the midsurface of the cardiac chamber in each frame of the
cardiac sequence.
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The goal is, for given midsurfaces in the reference frame and frame i, to find
γi such that the transformation from the reference frame to frame i is incom-
pressible. Let dv represent the infinitesimal volume defined by function m when
α, β, and γ are varied by infinitesimal increments dα, dβ, and dγ, respectively.
Similarly, let dvi represent the infinitesimal volume defined by function mi when
α, β, and γ are varied by infinitesimal increments dα, dβ, and dγ, respectively.
The transformation is incompressible if dv = dvi for any α, β, and γ. One can
obtain dv by taking the triple scalar product of ∂m

∂α dα, ∂m
∂β dβ, and ∂m

∂γ dγ, i.e.:

dv =
∂m
∂γ

· (
∂m
∂α

× ∂m
∂β

)dαdβdγ.

Using Eq. 1, the expression for the infinitesimal volume can be reduced to:

dv = A(1 − 2Hγ + Kγ2)dαdβdγ,

where A = | ∂r
∂α × ∂r

∂β |, and H and K are the mean and Gaussian curvatures,
respectively, of the midsurface in the reference frame. Since Adαdβdγ, H and
K are independent of parametrization [27], the above expression holds for any
parametrization. It is assumed that surface normals are oriented outward. Sim-
ilarly:

dvi =
∂mi

∂γ
.(

∂mi

∂α
× ∂mi

∂β
)dαdβdγ,

which simplifies to:

dvi = Ai(1 − 2Hiγi + Kiγ
2
i )

∂γi

∂γ
dαdβdγ,

where Ai = |∂ri
∂α × ∂ri

∂β |, and Hi and Ki are the mean and Gaussian curvatures,
respectively, of the midsurface in frame i. The incompressibility requirement
(dv = dvi) leads to the following differential equation:

1 − 2Hγ + Kγ2 = Si(1 − 2Hiγi + Kiγ
2
i )

∂γi

∂γ
,

where Si = Ai

A . After integration, the differential equation becomes a cubic
equation in γi:

γ − Hγ2 +
1
3
Kγ3 + Ci = Si(γi − Hiγi +

1
3
Kiγ

3
i ),

where Ci depends on α and β but not on γ. The transformation needs to map
points on the midsurface in the reference frame (γ = 0) to points on the midsur-
face in frame i (γi = 0), which implies that Ci = 0. The distance γi is obtained by
solving this cubic equation. Thus we can derive the location of the myocardium
in frame i, mi given by Eq. 2.

This transformation can easily be extended to all the heart chambers. The
final transformation to recover the deformation of all the chamber walls is:

T = TRA ◦ TLA ◦ TRV ◦ TLV, (3)
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where TRA, TLA, TRV, and TLV, are transformations of type defined in the
one chamber case, for the right atrium (RA), left atrium (LA), right ventricle
(RV), and LV, respectively. This combined transformation is also incompressible
since the Jacobian of T is the product of the corresponding Jacobians:

JT = JTRAJTLAJTRVJTLV = 1. (4)

2.3 Cardiac Deformation Recovery

The cardiac deformation is recovered for each frame i by searching for the loca-
tions of the control points that maximize a voxel based similarity measure. We
use normalized mutual information (NMI) as the similarity measure, which has
previously been successfully used for cardiac image registration [15]. The car-
diac deformation is recovered from the reference frame where the myocardium is
segmented. Thus, for all the other frames i, one needs to find the control points
that maximize the objective function O = NMI( Iref (m), Ii(Ti(m)) ), where
Ii is the image of frame i, Iref the image of the reference frame, Ti the trans-
formation from the reference frame to frame i, and m the myocardium points in
the reference frame.

We start the optimization process from the reference frame where the loca-
tions of the control points are known. Then, we advance in the forward direction
of the cardiac cycle. The locations of the control points in frame i are determined
by the Powell’s method [28], which uses as initialization the locations of the con-
trol points of the previous frame i − 1, and minimizes the objective function O.
In this way, we obtain the locations of the control points in each frame i of the
cardiac cycle.

3 Results

We have tested our method on four 3D MR image sequences, two normal cases
and two pediatric patients with tetralogy of Fallot (TOF), for the recovery of
LV and RV myocardium walls. To visualize the results, we have constructed the
3D myocardium wall surface for each frame of the cardiac sequence. Fig. 1 shows
the results for the first normal case.

Visual inspection and two quantitative procedures have been performed to
assess the accuracy of the method. Visual inspection of the myocardium surface
provided by our transformation model, as shown in Fig. 1 for the first normal
case and in Fig. 2 for all the four cases, suggests that the method was able to
successfully recover the deformation of LV and RV myocardium walls.

The first quantitative evaluation procedure compares the myocardial wall
provided by the transformation model with the one obtained by manual seg-
mentation for the ES frame. To evaluate the cardiac deformation recovery re-
sults, we computed the true positive (TP) rate, the false positive (FP) rate
and the volume ratio (VR). Let Vm represent the myocardium voxels recov-
ered by our transformation model and Vs those corresponding to the man-
ual segmentation.Furthermore, let Vms be the overlap of Vm and Vs, and Vms
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Fig. 1. Results for Normal 1. The rows represent different time positions of the car-
diac cycle: the first row corresponds to ED, and the third one corresponds to ES (a)
displacement fields from ED superimposed over the ED frame (b) recovered 3D surface
superimposed with the image, (c) recovered 3D surface.

the part that is in Vm but not in Vs. Then, TP rate = Vms

Vs
, FP rate =

Vms

Vs
, and V R = Vm

Vs
. The second quantitative procedure provides the average

Euclidean distance error between the recovered LV myocardium surface and the
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(a) (b)

(c) (d)

Fig. 2. 2D contours of the 3D myocardium wall surface for the middle slice at ES,
obtained by the transformation model (black) and manual segmentation (white). (a)
Normal 1, (b) Normal 2, (c) TOF 1, (d) TOF 2.

one obtained from manual segmentation. Table 1 shows for the four cases the
values of these two evaluation procedures. The resulting average error of TP and
FP rates is around 10%, and the volume ratio error is within 10%. The average
Euclidean distance error is 1.65mm, which is in the order of the image voxels
that have a size of 1.56mmx1.56mmx8mm. These results are similar to those
reported in [15, 16, 17, 18].

4 Conclusion

We have developed a method for nonrigid image registration for cardiac defor-
mation recovery from 3D MR image sequences. It is based on a 3D deformable
model that guarantees incompressibility: a desirable property since myocardium
has been shown to be close to incompressible. The presented method recovers
the deformation throughout the myocardium, i.e. not only at the endocardium
and epicardium, and it does not assume a biomechanical model, which could bias
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Table 1. VR, TP and FP rates, and the average Euclidean distance error d, between
the manually segmented and the recovered myocardium, are used to quantify the per-
formance of the cardiac deformation recovery. The results are presented for the four
cases ( two normal and two TOF cases) for the ES frame. The number of control points
used in each case are reported.

Case Normal 1 Normal 2 TOF 1 TOF 2

Number of control points 102 91 86 72
VR LV [%] 92.8 91.4 90.5 91.2
VR RV [%] 87.6 86.5 89.2 89.2

VR myocardium [%] 91.3 90.7 90.4 90.8
TP rate LV[%] 92.2 90.9 90.2 90.9
TP rate RV [%] 87.1 86.1 88.8 88.7

TP rate myocardium [%] 91.1 90.5 90.1 90.2
FP rate LV [%] 4.2 5.6 5.8 6.2
FP rate RV [%] 5.9 6.6 7.2 7.6

FP rate myocardium [%] 4.5 5.8 6.2 6.5
d myocardium [mm] 1.58 1.68 1.66 1.71

the result. From the recovered deformation, one can directly compute a number
of clinically useful parameters, including strains [29]. We tested the method on
four cases (two normals, two patients). A visual inspection of the recovered LV
wall and a comparison to manual segmentation suggest that the method is able
to successfully recover the deformation of the LV and RV myocardium walls.
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Abstract. In this article, we focus on the parameterization of non-
rigid geometrical deformations with a small number of flexible degrees
of freedom . In previous work, we proposed a general framework called
polyaffine to parameterize deformations with a small number of rigid or
affine components, while guaranteeing the invertibility of global defor-
mations. However, this framework lacks some important properties: the
inverse of a polyaffine transformation is not polyaffine in general, and the
polyaffine fusion of affine components is not invariant with respect to a
change of coordinate system. We present here a novel general framework,
called Log-Euclidean polyaffine, which overcomes these defects. We also
detail a simple algorithm, the Fast Polyaffine Transform, which allows
to compute very efficiently Log-Euclidean polyaffine transformations and
their inverses on a regular grid. The results presented here on real 3D
locally affine registration suggest that our novel framework provides a
general and efficient way of fusing local rigid or affine deformations into
a global invertible transformation without introducing artifacts, inde-
pendently of the way local deformations are first estimated.

1 Introduction

The registration of medical images is in general a difficult problem, and numer-
ous methods and tools have been already devised to address this task [9]. Still
currently, much effort continues to be devoted to finding adequate measures of
similarity, relevant parameterizations of geometrical deformations, efficient op-
timization methods, or realistic mechanical models of deformations, depending
on the precise type of registration considered.

In this article, we focus on the parameterization of non-rigid geometrical de-
formations with a small number of flexible degrees of freedom . This type of
parameterization is particularly well-adapted for example to the registration of
articulated structures [11] and to the registration of histological slices [12, 3]. Af-
ter a global affine (or rigid) alignment, this sort of parameterization also allows
a finer local registration with very smooth transformations [5, 10, 6, 13].

In [3], we parameterized deformations with a small number of rigid or affine
components, which can model smoothly a large variety of local deformations.

J.P.W. Pluim, B. Likar, and F.A. Gerritsen (Eds.): WBIR 2006, LNCS 4057, pp. 120–127, 2006.
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We provided a general framework to fuse these components into a global trans-
formation, called polyrigid or polyaffine, whose invertibility is guaranteed. How-
ever, this framework lacks some important properties: the inverse of a polyaffine
transformation is not polyaffine in general, and the polyaffine fusion of affine
components is not invariant with respect to a change of coordinate system (i.e.
is not affine-invariant). Here, we present a novel general framework to fuse rigid
or affine components, called Log-Euclidean polyaffine, which overcomes these
defects and yields transformations which can be very efficiently computed.

The sequel of this article is organized as follows. In Section 2, we present
the Log-Euclidean polyaffine framework and its intuitive properties. Then, we
present the Fast Polyaffine Transform (FPT), which allows to compute very effi-
ciently Log-Euclidean polyaffine transformations (LEPTs) and their inverses on
a regular grid. Finally, we apply the FPT to a real 3D example, where affine com-
ponents are estimated with the algorithm of [5]. Without introducing artifacts,
our novel fusion ensures the invertibility of the global transformation.

2 A Log-Euclidean Polyaffine Framework

Before presenting our novel polyaffine framework, let us briefly recall our frame-
work for locally affine registration and the original polyaffine framework, de-
scribed in [3].

Locally Affine or Rigid Transformations. Following the seminal work of
[8], we parameterize locally affine (or rigid) transformations by N affine (or
rigid) components. Each component i consists of an affine transformation Ti =
(Mi, ti) (Mi and ti are the linear and translation parts) and of a non-negative
weight function wi(x), such that the influence of the ith component at point x
is proportional to wi(x). Here, we assume that the weights are normalized: that
for all x,

∑N
i=1 wi(x) = 1.

Direct Fusion of Components. To obtain a global transformation from sev-
eral components, the classical approach [14], called here direct fusion, simply
consists in averaging the associated displacements according to the weights:

T (x) =
N∑

i=1

wi(x)Ti(x). (1)

The transformation obtained using (1) is smooth, but although each component
is invertible, the resulting global transformation is not invertible in general.

Previous Polyaffine Framework. We proposed in [3] to average displace-
ments infinitesimally. The resulting global transformation is obtained by in-
tegrating an Ordinary Differential Equation (ODE), called polyaffine, which is
computationally more expensive, but guarantees the invertibility of global defor-
mations. To define a polyaffine ODE, this approach relies on principal logarithms
of the linear parts Mi of the transformations Ti. However, as mentioned in the
introduction, this framework lacks some important and desirable properties.
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Logarithm of an Rigid or Affine Transformation. The key idea of our
novel approach is to use the logarithms of the transformations themselves. In 3D,
the logarithm of an affine (or rigid) transformation T is given in homogeneous
coordinates by a 4x4 matrix which is simply the matrix logarithm of the 4x4
matrix representing T [1]:

log (T ) = log
(

M t
0 1

)
=
(

L v
0 0

)
.

This logarithm is well-defined if and only if none of the eigenvalues of M are
non-positive real numbers. See [4] for more details and an efficient numerical al-
gorithm to compute matrix logarithms. Intuitively, this constraint only excludes
affine transformations very far from the identity, which we did not observe at
all in our registration experiments. In particular, for rigid components, this only
imposes that (local) rotations be stricly below π radians. For a discussion of this
limitation, see [1]. In the following, we assume that the logarithms of our affine
transformations are well-defined.

Log-Euclidean Polyaffine Transformations. Let (Ti) be N affine (or rigid)
transformations, and let (log(Ti)) be their logarithms. Using these logarithms,
one can fuse the Ti infinitesimally according to the weights wi(x) with a sta-
tionary (or autonomous) ODE. In homogeneous coordinates, this ODE is the
following:

ẋ = V (x)
def
=
∑

i

wi(x) log(Ti).x. (2)

The solutions of (2) are always well-defined for all time. The proof is extremely
similar to that given in [3]. The value at a point x of the Log-Euclidean polyaffine
transformation (LEPT) defined by (2) is given by integrating (2) between time 0
and 1 with x as initial condition. This novel framework is called Log-Euclidean,
because when the weights wi(x) do not depend on x, the resulting LEPT is
simply the affine (or rigid) transformation equal to exp(

∑
i wi log(Ti)), i.e. the

Log-Euclidean mean of the components, similarly as in our work on tensors [2].

Remarkable Properties. The stationarity of (2) yields particularly nice and
intuitive properties, conveniently expressed in terms of flow. At an instant s,
the flow T (s, .) of (2) is the mapping which gives the way the ambient space is
deformed by the integration of (2) during s units of time. It is always invertible
and smooth (as well as its inverse) [16], i.e. it is a diffeomorphism.

A classical property of the flow is the following: it is a one-parameter subgroup
of diffeomorphisms, i.e. T (s, .) ◦ T (t, .) = T (s + t, .). Here, it is also a one-
parameter subgroup of LEPTs. This means that T (s, .) is the sth power of the
Log-Euclidean polyaffine transformation defined by T (1, .). In particular, we have
the intuitive properties that the inverse of T (1, .) (resp. its square root) is simply
T (−1, .) (resp. T (1/2, .)), i.e. the LEPT with identical weights but whose affine
transformations are the inverses (resp. square roots) of the original ones. Last
but not least, (2) is affine-invariant: the Log-Euclidean polyaffine fusion does
not depend on the current coordinate system. For more details, see [1].
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3 Fast Polyaffine Transform

The remarkable (and novel) properties of the Log-Euclidean polyaffine frame-
work allow fast computations of LEPTs. We propose here a very efficient algo-
rithm to evaluate a Log-Euclidean polyaffine transformation on a regular grid.

Method Overview. Surprisingly, our fast algorithm generalizes a method
widely used to compute matrix exponentials to the non-linear case. The basic
idea of this method, called ‘Scaling and Squaring’, is that for a square matrix M ,
we have: exp(M) = exp( M

2N )2
N

. Since the matrix exponential is much simpler to
compute for matrices close to zero, for example using Padé approximants, one
can compute very accurately exp

(
M
2N

)
and obtain exp(M) by squaring recur-

sively N times the result [7]. In the non-linear case, since the flow T (s, .) of (2)
is a one-parameter subgroup, we also have:

T (1, .) = T

(
1

2N
, .

)2N

, (3)

which means that what the deformation observed at time 1 (i.e., the LEPT)
results of 2N times the composition of the small deformations observed at time
1

2N . Therefore, one can generalize the ‘Scaling and Squaring’ method to LEPTs
in a straightforward way. This method, called the ‘Fast Polyaffine Transform’
(FPT), follows the same three steps as in the matrix case:

1. Scaling step: divide V (x) (speed vectors of (2)) by a factor 2N , so that
V (x)/2N is close enough to zero (according to the level of accuracy desired).

2. Exponentiation step: T
( 1

2N , .
)

is computed with a numerical scheme.
3. Squaring step: using (3), N recursive squarings of T

( 1
2N , .

)
yield an accu-

rate estimation of T (1, .) (only N compositions of mappings are used).

Numerical Scheme for the Exponentiation Step. Integrating an ODE
during a very short interval of time (short with respect to the smoothness of the
solution) is quite simple. Generalizing ideas of [3], we use in this article a second-
order scheme, called the affine exponentiation scheme (A.S.), which is exact in
the case of a single affine component. It writes in homogeneous coordinates:

T

(
1

2N
, x

)
A.S.

def
=

N∑
i=1

wi(x). exp
(

1
2N

log (Ti)
)

.x.

This choice of scheme comes from our numerical experiments [1] which show that
this numerical scheme is on average approximately 40% more accurate than the
first-order explicit scheme, with a similar simplicity and computational cost.

Computational Cost. An integration of (2) between times 0 and 1 with a
time-step of 2−N is performed in only N steps, and not in 2N steps as with
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Fig. 1. Fast polyaffine transform for two rotations: three last squaring steps.
6 squarings are used in this experiment. Note how the deformation is initially very small,
and increases exponentially. The relative accuracy of the estimation of the polyaffine
transformation is on average of 0.21%, and the maximal error is below 3.2%.

methods using fixed time-steps. This is somehow comparable with the computa-
tional gain obtained by using the Fast Fourier Transform. Interestingly, after the
exponentiation step, only N compositions between transformations are needed,
which is an operation based on interpolation techniques. In this work, we use
bi- and tri-linear interpolations, which are simple and guarantee a continuous
interpolation of our transformation.

Synthetic Experiments. We measure the accuracy of our results by comput-
ing the relative difference with respect to an accurate estimation of the continu-
ous transformation, obtained by a classical integration (i.e., with fixed time step,
here 2−8 ) of (2) for each voxel of the grid, which has 50 × 40 pixels. Numerical
errors at the boundary of the regular grid are drastically reduced here by adding
extra points to the grid so that it contains the boundary of the original grid
deformed by direct fusion.

Fig. 1 displays the last 3 squaring steps of a typical FPT, using two rotations
of opposite angles of 0.63 radians, (normalized) Gaussian weights (σ = 5) and
a scaling of 26 (i.e., 6 squarings). Errors are low: the relative accuracy of the
resulting estimation of the polyaffine transformation is on average 0.21% (instead
of approximately 0.6% without an enlarged grid), and the maximal relative error
is below 3.2% (instead of 11% wihtout an enlarged grid).

Inversion with the FPT. The inverse of a LEPT is simply (and intuitively)
the LEPT with the same weights and with inverted affine transformations.
Therefore, it can also be computed using the FPT. The accuracy of the in-
version is evaluated via the composition of the estimation of the original LEPT
and of its inverse by FPT, which should be close to the identity. Fig. 2 shows
the evolution of this accuracy when the number of squarings varies, in our ex-
ample of fusion between two rotations. We thus see that an excellent quality of
inversion can be achieved using a small number of squarings, typically 7. The
maximal relative error converges below 2% and the mean relative error is of the
order of 0.2%. Similar results were obtained in [1] on other examples.
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Fig. 2. Inversion with the FPT. From left to right: the regular grid deformed
by the composition between the FPT of the LEPT and the FPT of its inverse, first
with 2 squarings then 6 squarings. On the right: evolution of the relative accuracy
when the number of squarings varies. An excellent accuracy is already achieved with 6
squarings, and the mean and maximal relative errors converge toward 0.2%and 2%.

4 Application to Locally Affine 3D Registration

Let us now consider a real 3D example of locally affine registration, between an
atlas of 216 × 180 × 180 voxels and a T1-weighted MR image, with the multi-
resolution and robust block-matching algorithm described in [5], without regu-
larization. 7 structures of interest are considered: eyes (1 affine component each),
cerebellum (2 components), brain stem (2 components), optic chiasm (1 com-
ponent), 1 supplementary component (set to the identity) elsewhere. Weight
functions are defined in the atlas geometry using mathematical morphology and
a smoothing kernel in a preliminary step [5].

LEPTs as a Post-Processing Tool. To obtain short computation times
(typically 10 minutes), our locally affine registration algorithm estimates affine
components using the direct fusion. The FPT is used in a final step to ensure

Fig. 3. Locally affine vs. dense-transformation: smoothness of deformations.
The contours of our structures of interest (eyes, brain stem, cerebellum, optic chiasm)
are displayed on the subject and are obtained by deforming those of the atlas using
the dense transformation of [15] and using our locally affine framework. From left to
right: axial slice, with first dense and then locally affine deformations; sagittal slice,
with again dense and then locally affine deformations. Note how smoother contours are
in the locally affine case, although both accuracies are comparable.
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Fig. 4. Singularity removal with LEPTs.A 3D regular grid is deformed with the
locally affine transformation obtained with the algorithm of [5], two slices are displayed.
From left to right: polyaffine fusion and direct fusion (for the first slice) and then
again polyaffine fusion and direct fusion (second slice). Note how the singularities of the
direct fusion disappear with LEPTs. Remarkably, this is obtained without introducing
any artifacts: outside singularities, both fusions yield very close results.

the invertibility of the final transformation, as well as to compute its inverse.
A typical result of this registration procedure is illustrated by Fig. 3, which
shows that the locally affine registration, with much smoother deformations,
has an accuracy in the structures of interest which is comparable to the dense
transformation case of [15].

Here, the scaling used in 28 and the FPT is computed in 40s on a Pentium4
Xeon™2.8 GHz on a 216× 180× 180 regular grid. As shown by Fig. 4, the direct
fusion of components estimated by [5] can lead to singularities, which is not the
case when the FPT is used. Remarkably, both fusions are very close outside of
regions with singularities. This means that no artifacts are introduced by the
FPT, which justifies a posteriori the estimation of affine components with the
(faster) direct fusion.

5 Conclusion and Perspectives

In this work, we have presented a novel framework to fuse rigid or affine com-
ponents into a global transformation, called Log-Euclidean polyaffine. Similarly
to the previous polyaffine framework of [3], it guarantees the invertibility of the
result. However, contrary to the previous framework, this is achieved with very
intuitive properties: for example the inverse of a LEPT is a LEPT with identical
weights and inverted affine components. Moreover, this novel fusion is affine-
invariant, i.e. does not depend on the choice of coordinate system. We have also
shown that remarkably, and contrary to previous polyaffine transformations, the
specific properties of LEPTs allow their fast computations on regular grids, with
an algorithm called the ‘Fast Polyaffine Transform’, whose efficiency is somehow
comparable to that of the Fast Fourier Transform.

In the example of locally affine 3D registration presented here, we use LEPTs
in a final step to fuse the affine components estimated during the algorithm of
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[5]. With the FPT, this is done very efficiently. Remarkably, the novel fusion is
very close to the direct fusion in regions without singularities. This suggests that
our novel framework provides a general and efficient way of fusing local rigid or
affine deformations into a global invertible transformation without introducing
artifacts, independently of the way local affine deformations are first estimated.
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Abstract. Non-rigid image registration (NIR) is an essential tool for
morphologic comparisons in the presence of intra- and inter-individual
anatomic variations. Many NIR methods have been developed, but are es-
pecially difficult to evaluate since point-wise inter-image correspondence
is usually unknown, i.e., there is no “Gold Standard” to evaluate perfor-
mance. The Non-rigid Image Registration Evaluation Project (NIREP)
has been started to develop, establish, maintain, and endorse a standard-
ized set of relevant benchmarks and metrics for performance evaluation
of nonrigid image registration algorithms. This paper describes the basic
framework of the project.

1 Introduction

Image registration is important for many applications, including longitudinal
evaluations in individuals, comparison between individuals, creation of popu-
lation atlases, use of atlas-linked information in individual cases, delivery of
precision therapies, and many others. Non-rigid image registration is a more
general approach than the widely used affine and rigid methods, but requires
more complex methodology and computational effort to implement. Evaluating
the performance of non-rigid image registration algorithms is a difficult task since
point-wise correspondence from one image to another is not unique. That is there
is rarely if ever a ground truth correspondence map to judge the performance of
a registration algorithm.

We have started the Non-rigid Image Registration Evaluation Project (NIREP)
to develop software tools and provide shared image validation databases for rig-
orous testing of non-rigid image registration algorithms. NIREP will extend the
scope of prior validation projects by developing evaluation criteria and metrics us-
ing large image populations, using richly annotated image databases, using com-
puter simulated data, and increasing the number and types of evaluation criteria.

J.P.W. Pluim, B. Likar, and F.A. Gerritsen (Eds.): WBIR 2006, LNCS 4057, pp. 128–135, 2006.
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The goal of this project is to establish, maintain, and endorse a standardized
set of relevant benchmarks and metrics for performance evaluation of nonrigid
image registration algorithms. Furthermore, these standards will be incorporated
into an exportable computer program to automatically evaluate the registration
accuracy of nonrigid image registration algorithms.

2 Prior Studies

To date, few attempts have been made to objectively evaluate and compare
the performance of image registration algorithms using standard evaluation cri-
teria. Two projects that stand out in this regard are the “Retrospective Image
Registration and Evaluation Project” [1] led by J. Michael Fitzpatrick of Vander-
bilt University for evaluating multimodality rigid registration accuracy and the
non-rigid registration evaluation project entitled “Retrospective Evaluation of
Inter-subject Brain Registration” [2] led by Christian Barillot of IRISA/INRIA-
CNRS Rennes, France. In both of these projects, a common set of images was
used to evaluate the performance of registration algorithms. Developers from
around the world participated in these projects by registering the images with
their own registration algorithms and sending the resulting transformations back
to the home site for analysis. The benefits of involving external participants in-
clude eliminating implementation biases, distributing the processing load, and
providing an incentive to produce good results.

Another important validation/evaluation project is the VALMET software
tool for assessing and improving 2D and 3D object segmentation developed by
Guido Gerig et al. [3] (www.ia.unc.edu/public/valmet/). The VALMET soft-
ware was the first publicly available software tool for measuring and visualizing
the differences between multiple corresponding medical image segmentations. It
includes four algorithms for comparing segmentations: overlap ratio, Haussdorf
distance, surface distance, and probabilistic overlap. The NIREP software evalu-
ates image registration algorithm performance similar to the way the VALMET
software evaluates image segmentation performance. In the future, all the VAL-
MET evaluation metrics will be incorporated in to the NIREP software since
automatic image segmentation produced from image registration is often used
to evaluate registration performance.

3 NIREP Framework

The Nonrigid Image Registration Evaluation Project (NIREP) will build upon
these earlier projects and provide a rich set of metrics for evaluating registration
performance. We are building an exportable software tool that has nonrigid
image registration evaluation metrics built into it. This is in contrast to previous
projects that collected registration transformations from external participants
and performed the analysis internally.

Under our model, NIREP software users will process their own data and
evaluate the performance of different nonrigid registration algorithms on this
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data. The tests will be fixed in the program such that the users will not be able to
affect the results. This model has the advantage of standardizing the evaluation
metrics and distributing the processing load. It will provide researchers with
a tool to compare the performance of multiple registration algorithms on their
own data so they can make an informed decision regarding the best algorithm for
their specific application. It also provides researchers with a tool to validate their
research results. The full disclosure of all validation tests performed as a result
of NIREP project will be collected and analyzed. The results and analysis will
be disseminated through publications and a central web site (www.nirep.org).

Evaluating the performance of nonrigid image registration algorithms is a
difficult task since point-wise correspondence from one image to another is not
known. In the absence of the truth, a diverse set of evaluation metrics will be
used to evaluate registration performance on multiple well documented image
databases. These tests evaluate the performance of image registration algorithms
with respect to their transformation properties, agreement with human experts,
agreement with computer simulated data, and other indirect performance tests.
Complete and accurate reporting of validation tests will be published so that
others will be able to detect potential bias (internal validity) and assess the
generalizability and applicability of the results (external validity).

The NIREP software evaluates image registration algorithms in a similar fash-
ion to the model used to evaluate the performance of computer hardware and
systems. Computer systems are evaluated and compared using not one but many
diverse criteria. The diversity of the tests serves both to evaluate system per-
formance and to demonstrate the trade-offs between various systems. Popular
examples of groups that evaluate computer hardware performance include the
Standard Performance Evaluation Corporation (www.specbench.org) and Tom’s
Hardware (www.tomshardware.com). The diversity of the image registration
metrics developed in NIREP evaluate registration algorithm performance and
demonstrate trade-offs between different algorithms.

4 Evaluation Database

Our initial evaluation database consists of a population of 16 richly annotated
3D MR image volumes corresponding to 8 normal adult males and 8 females.
These data sets were selected from a database of healthy right-handed indi-
viduals acquired in the Human Neuroanatomy and Neuroimaging Laboratory,
The University of Iowa, and now part of the Laboratory of Computational Neu-
roimaging, The University of Iowa. The males have a mean age of 32.5 years,
standard deviation of 8.4 years and range in age from 25 to 48. The females
have a mean age of 29.8 years, standard deviation of 5.8 and range in age from
24 to 41. The complete population will be used to evaluate the non-rigid image
registration performance for complexly shaped neuroanatomical structures.

The 16 MR data sets have been segmented into 32 gray matter regions of
interest (ROIs). Fig. 1 shows an example of the segmentations associated with
the MR data sets. Some of these data sets and their segmentations appear in a
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Fig. 1. Shown are the segmentations available in the neuroanatomy 1 evaluation
database. The segmentations include gray matter regions in the frontal, parietal, tem-
poral, and occipital lobes; cingulate gyrus; and insula. The cerebellum, hypothalamus,
and brain stem are currently not segmented currently.

new atlas by Hanna Damasio that illustrates the normal neuroanatomy of the
human brain, and have been used in several publications about the morphometric
analysis of the normal human brain [4, 5, 6].

The brains were initially segmented with Brainvox [7] using the criteria de-
scribed in papers by John Allen et al. [4, 5, 6]. The resulting segmentations par-
titioned the brain in to regions that contained both gray and white matter.
Although the image volumes were carefully segmented, the segmentation pro-
cess was done in 2D. As a result, the segmentations were smooth in the plane
of segmentation but had rough edges when viewed in oblique slices. In addition,
many of the segmentations had to have arbitrary boundaries within the white
matter since region boundaries are well defined at sulci level but have to rely on
“connecting lines” between the depth of the sulci within the white matter. These
initial segmentations were then restricted to the gray matter to fix the boundary
problems in the white matter. Gray matter segmentations were generated using
the approach described in Grabowski et al. [8]. The gray matter segmentations
were applied to the regional segmentations to remove the white matter from the
segmentations. This produced gray matter ROIs with smooth boundaries at the
outer surface of the cortex and at the gray/white interface. The segmentations
were then hand edited using the AnalyzeTM software (Mayo Clinic, Rochester
Minnesota) to produce the final gray matter segmentations.

5 Evaluation Criteria

Since there is rarely if ever a “Gold Standard” to evaluate image registration
results, no metric alone is sufficient to evaluate the performance of a nonrigid
registration algorithm. However, using information from many different diverse
metrics will provide a good indication of the non-rigid image registration perfor-
mance. In this initial phase of the project, we have included the following four
metrics: (1) relative overlap, (2) intensity variance, (3) inverse consistency and
(4) transitivity.
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Relative Overlap Metric: The alignment of the regions of interest (ROIs) is a
good indicator of how well two images are registered. The relative overlap of the
segmentations is a measure of how well two corresponding segmented regions
agree with each other. The Relative Overlap metric is given by RO(P, S) =
volume(P∩S)
volume(P∪S) where P and S are two corresponding segmentations. In the context
of image registration, P corresponds to a segmentation transformed from image
i to j compared to the corresponding segmentation S defined in image j.

The NIREP software generates a variety of images for evaluation of local
spatial registration performance and summarizes relevant performance statistics
for each region of interest with tables and plots. Figure 2 shows an example of
relative overlap performance for the superior frontal gyrus (SFG) and Table 1
shows statistics for the relative overlap before and after registration for the left
and right SFG (LSFG, RSFG), the left and right temporal pole (LTP, RTP),
and the left and right orbito-frontal gyrus (LOFG, ROFG). As Fig. 2 illustrates,
images provide the user with visual feedback for evaluating how well the superior
frontal gyrus was registered before and after registration. Similarly, numerical
data such as shown in Table 1 provides the user with quantitative feedback of
algorithmic performance. Note that the 32 gray matter segmentations currently
included in the neuroanatomy 1 database have relatively small volumes compared
to the brain volume and have large surface areas compared to their volume.
Segmentations with small volumes and large surface areas typically have small
relative overlaps even for good registrations. These segmentations should provide
a challenging goal for registration.

Fig. 2. Relative overlap images for the right
Superior Frontal Gyrus before and after in-
tersubject registration. Red - target, Green -
before registration, Blue - after registration.

Intensity Variance Metric: A common method used to measure image reg-
istration performance is to register a population of images with a target image
and average the intensities of the registered images. The idea is that the better
the registration algorithm is, the closer each registered image looks to the target
image and the sharper the intensity average image. One way to measure the
sharpness of the intensity average image is to compute the variance of the reg-
istered intensity images. The voxel-wise intensity variance (IV) of a population
of M images registered to image j is computed as

IVj(x) =
1

M − 1

M∑
i=1

(Ti(hij(x))−avej(x))2 where avej(x) =
1
M

M∑
i=1

Ti(hij(x)),

(1)
Ti is the ith image of the population and hij(x) is the transformation from image
i to j with respect to a Eulerian coordinate system.
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Table 1. Relative overlap (RO) summary table for 132 (2×(11+···+1)) transformations
registered a population of 12 out of the 16 data sets using small deformation inverse-
consistent linear-elastic (SICLE) registration method [9]. The voxel size is 0.7 × 0.7 ×
0.7 mm3. Due to lack of space, we only report the RO of 6 regions of interest (ROIs)
as a representative sample of the RO of all 32 ROIs. The 6 ROIs include: Left/Right
Temporal Poles (LTP, RTP), Left/Right Superior Frontal Gyrus (LSFG, RSFG), and
Left/Right Orbital Frontal Gyrus (LOFG, ROFG).

LTP RTP LSFG RSFG LOFG ROFG
Ave Vol (voxel3) 27900 30900 79600 76700 45700 47300
Std Dev Vol 4850 4320 9960 12200 3250 5080
Ave Surface Area (voxel2) 11100 12200 36900 37000 21800 22600
Std Dev Surface Area 1700 1360 4160 4700 1700 2610
Ave RO: before registration 0.365 0.237 0.267 0.263 0.338 0.194
Ave RO: after SICLE 0.542 0.334 0.364 0.360 0.469 0.290
RO Std dev: before registration 0.0733 0.0632 0.0399 0.0613 0.0747 0.0505
RO Std dev: after SICLE 0.0503 0.0495 0.0341 0.0438 0.0295 0.0460

Inverse Consistency Metric: The inverse consistency metrics evaluates reg-
istration performance based on desired transformation properties [9, 10, 11]. The
inverse consistency metric measures the inverse consistency error between a for-
ward and reverse transformation between two images. Ideally the forward trans-
formation equals the inverse of the reverse transformation implying a consistent
definition of correspondence between two images, i.e., correspondence defined by
the forward transformation should be the same as that defined by the reverse
transformations. Thus, composing the forward and reverse transformations to-
gether produces the identity map when there is no inverse consistency error. The
inverse consistency error is defined as the squared difference between the com-
position of the forward and reverse transformations and the identity mapping.

The voxel-wise cumulative inverse consistency error (CICE) with respect to
template image j is computed as

CICEj(x) =
1
M

M∑
i=1

||hji(hij(x)) − x||2 (2)

where hij is the transformation from image i to j, M is the number of images
in the evaluation population and || · || is the standard Euclidean norm.

The CICE is an example of a necessary evaluation metric for evaluating reg-
istration performance but is not a sufficient evaluation metric to guarantee good
correspondence. For example, two identity transformations have zero inverse con-
sistency error but in general provide poor correspondence between two images.
However, a pair of transformations that provide good correspondence between
images should have zero CICE.

Transitivity Metric: The transitivity metric [11] evaluates how well all the
pairwise registrations of the image population satisfy the transitivity property.
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The transitivity property is important to minimize correspondence errors when
two transformations are composed together. Ideally, transformations that define
correspondence between three images should project a point from image A to B
to C to A back to the original position. The transitivity error for a set of trans-
formations is defined as the squared error difference between the composition of
the transformations between three images and the identity map.

The voxel-wise cumulative transitivity error (CTE) with respect to template
image j is computed as

CTEk(x) =
1

(M − 1)(M − 2)

M∑
i=1
i�=k

M∑
j=1
j �=i
j �=k

||hki(hij(hjk(x))) − x||2. (3)

The CTE is another example of a necessary evaluation metric but is not a
sufficient evaluation metric for guaranteeing good correspondence. For example,
a set of transformations that have zero transitivity error does not imply good
correspondence as can be see with a set of identity transformations. However,
a set of transformations that provide good correspondence between images in a
population should have zero transitivity error.

6 Future Work

In the future, additional evaluation databases and metrics will be added to
NIREP. The NIREP project will serve as a repository for evaluation databases
and metrics developed at The University of Iowa and contributed from re-
searchers at other institutions. Extensive documentation will be collected de-
scribing the strengths and weaknesses of evaluation databases, metrics, and
registration algorithms. The NIREP project, with the help of the medical imag-
ing community, will establish, maintain, and endorse a standardized set of
relevant benchmarks and metrics for performance evaluation of nonrigid image
registration algorithms.
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Abstract. We propose a unified framework in which atlas-based seg-
mentation and non-rigid registration of the atlas and the study image
are iteratively solved within a maximum-likelihood expectation maxi-
mization (ML-EM) algorithm. Both segmentation and registration pro-
cesses minimize the same functional, i.e. the log-likelihood, with respect
to classification parameters and the spatial transformation. We demon-
strate how both processes can be integrated in a mathematically sound
and elegant way and which advantages this implies for both segmenta-
tion and registration performance. This method (Extended EM, EEM) is
evaluated for atlas-based segmentation of MR brain images on real data
and compared to the standard EM segmentation algorithm without em-
bedded registration component initialized with an affine registered atlas
or after registering the atlas using a mutual information based non-rigid
registration algorithm (II).

1 Introduction

Atlas-based image segmentation and atlas-to-image non-rigid registration are
two challenging problems that are currently actively being investigated in med-
ical image analysis. Traditionally these two problems have been solved indepen-
dently from each other, although it is clear that a duality exists between the two
processes and that they can mutually help each other. In the atlas-based MR
brain image segmentation approach proposed in [11], (affine) image registration
is applied to match a digital brain atlas to the study image to be segmented,
which is used to initialize the segmentation process. The same atlas is used during
segmentation iterations to spatially constrain the classification process. Hence,
the transformation used to align the atlas to the study image has important
impact on the final segmentation result.

On the other hand image registration can also benefit from available segmen-
tation results. In a traditional mutual information based registration approach,
images are registered based on intensity information only. Recently, several ap-
proaches have been presented [12, 8, 9] that incorporate voxel label information
in the registration criterion.
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At the best of our knowledge, only three authors have addressed the topic
of merging voxel based brain segmentation and registration [13, 1, 4]. In [13]
the authors formulate the joint segmentation/registration problem as the Maxi-
mum A Posteriori (MAP) estimation of the segmentation S and the registration
transformation T. The authors define one similarity measure for the registration
and one for the segmentation component. The joint problem is then solved by
finding the solution to the combined registration and segmentation similarity
measures. The entire framework is formulated for rigid registration and no bias
correction is performed during the segmentation step. In [4] the authors extend
the work of [13] to include a B-spline based non-rigid transformation and an
hidden Markov random field to improve the segmentation performance.

A similar method is proposed by Ashburner et al. [1]. However, our method
differs by the choice of the deformation model, using a viscous fluid regularization
that allows for larger deformations than the discrete cosine representation of
Ashburner et al [1]. Moreover, in this paper we present an extensive validation
of our combined registration and segmentation approach in the context of atlas-
based MR brain image segmentation and demonstrate that the simultaneous
solution of both problems within a single mathematical framework significantly
improves the segmentation performance over a sequential application of the non-
rigid registration and segmentation steps.

2 Method

In [11], an approach for automated intensity-based tissue classification of MR
brain images is introduced. This method uses the Expectation-Maximization
algorithm to iteratively estimate the parameters θ = (μk, θk, k = 1...n) of a
Gaussian mixture model (assuming the intensities of each tissue class to be nor-
mally distributed with unknown mean and variance, but corrupted by a spatially
varying intensity inhomogeneity or bias field) and simultaneously classify each
voxel accordingly, such as to maximize the likelihood p(I|θ) of the intensity
data I given the model. The method (in what follows simply called EM) is ini-
tialized by providing initial tissue classification maps for white matter (WM),
gray matter (GM), cerebrospinal fluid (CSF) and OTHER derived from a digi-
tal brain atlas after appropriate spatial normalization of the atlas to the study
images. However, the atlas is not only used to initialize the EM procedure, but
also serves as a spatially varying prior that constrains the classification dur-
ing parameter estimation and in the final classification step. The probabilistic
tissue classification L is obtained as the a posteriori probability of tissue la-
bel given the observed image intensity and the estimated intensity parameters,
which, assuming that all voxels are independent, is computed using Bayes’ rule
as p(lk = j|Ik, θ) ∝ p(Ik|lk = j, θ).p(lk = j) with lk the label assigned to voxel k,
j the various tissue classes, Ik the intensity of voxel k, p(Ik|lk = j, θ) the proba-
bility of the observed intensity given the specified class label as derived from the
Gaussian mixture model and p(lk = j) the prior probability of voxel k to belong
to class j, which is simply the atlas registered to the image I. Hence, the quality
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of the atlas-to-image registration has a direct impact on the segmentation result
through the above relation and the impact of the atlas model (p(lk = j)) is as
important as that of the intensity data (p(Ik|lk = j, θ)) itself.

Formally, in the EM approach the log-likelihood function Q is defined as:

Q(θ|θm) =
∑

i

∑
k

pm+1
ik .(log p(li = k) + log p(y

′
i|li = k, μk, σk, C)) (1)

with pm+1
ik the a posteriori probability for voxel i to belong to class k (i.e. the

tissue classification constructed by segmentation), p(li = k) the a priori prob-
ability (derived from the brain atlas) and p(y

′
i|li = k, μk, σk, C) the Gaussian

class-specific intensity distribution with parameters μ and σ for the bias-field
corrected intensity y

′
with bias field parameters C. (We ignore the bias field

in the following derivation, although the bias field correction component is in-
cluded in all experiments in this paper, see [11]). In the Expectation step of
the EM algorithm, the parameters of the Gaussian mixture model are estimated
iteratively based on the current tissue classification:

∂Q

∂μm+1
k

= 0 =⇒ μm+1
k =

∑n
i=1 p

(m)
ik .yi∑n

i=1 p
(m)
ik

(2)

∂Q

∂σm+1
k

= 0 =⇒ (σm+1
k )2 =

∑n
i=1 p

(m)
ik (yi − μm+1

k )2∑n
i=1 p

(m)
ik

In the Maximization step, voxel classification is performed based on the new
estimate of the parameters:

p
(m+1)
ik =

p(yi|li = k, μk, σk).p(li = k)∑
j p(yi|li = j, μj , σj).p(li = j)

(3)

The method iterates between both steps until convergence.
In the work presented here, we extend this approach to take into account a

spatial transformation mapping the (atlas) prior p(li = k) onto the space of the
study image. More specifically, starting from the same likelihood function, the
E-step of the EM algorithm is extended as follows:

∂Q

∂T
=
∑

i

∑
k

∂Q

∂p(lk = i)
∂p(lk = i)

∂T

where T represents the transformation parameter.
If we use trilinear interpolation to warp the atlas to the study image according

to the transformation T (but any other differentiable interpolation scheme can
also be used), we have:

p(li = k|T ) =
n∑

j=1

wijpj,k =⇒ ∂p(lk = i|T )
∂T

=
n∑

j=1

∂wij

∂T
pj,k



A Unified Framework for Atlas Based Brain Image Segmentation 139

where n is the number of neighbors (8 in three dimensions), pj,k is the probability
of neighbor j to belong to class k and wij are the trilinear interpolation weights.
As it can be seen the derivative ∂p(lk=i)

∂T of p(li = k) with respect to T can simply
be computed by differentiating the trilinear weights. It follows therefore:

∂Q

∂T
=
∑

i

∑
k

pm+1
ik

p(li = k|T )

n∑
j=1

∂wij

∂T
pj,k (4)

We need to solve for the deformation for which ∂Q
∂T = 0. While for μ and σ a

closed form solution could be derived, solving for T requires an iterative procedure.
We interpretate ∂Q

∂T as a force field that can be defined in each voxel by considering
individual voxel displacements. Akin to our previous registration schemes based
on mutual information [7] and label-based similarity measures [8], we use this force
field to drive the registration by replacing the force field in our previous schemes
by the expression for ∂Q

∂T above. A viscous fluid regularizer was used.
Hence, the segmentation and registration processes are linked and collaborate

through the joint optimization of the same functional Q.

3 Results

We performed two different experiments. In the first experiment we investigated
the behavior of the algorithm, in normal conditions, by segmentating 20 (normal)
brain images. These images are part of a database ([2]) including T1 images and
probability labels for 49 regions in the brain. The different labels were obtained
by manual delineation and have been used as ground truth.

In the second experiment we studied the feasibility of our algorithm in pres-
ence of gross morphological distortions as they occur in PeriVentricular Leuko-
malacia (PVL) child brain images. Here no ground truth was present and there-
fore a qualitative (visual) analysis of the results was used.

In both experiments we used an home-made brain atlas as floating image
([3]). This atlas is composed by a T1 image, priors for white matter matter, gray
matter, csf and max-probability labels for 49 regions in the brain.

3.1 Normal Brain Images Database

In this first experiment we applied the EEM algorithm (joint segmentation and
registration) to each of the 20 images. Our atlas was used to initialize the seg-
mentation and was iteratively deformed onto the study image. As a result of
the EEM algorithm we obtained segmentation maps for WM, GM and CSF
and deformation fields. In order to assess the results of the EEM algorithm we
deformed the atlas using the II algorithm onto each of the 20 images.

We compared the quality of the obtained registrations by computing overlap
coefficients between the ground truth for WM, GM and CSF (manual segmenta-
tions in the database) and the corresponding atlas priors after affine registration
and after deformation with the EEM and the II algorithms.
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We also compared the segmentation issued from the EEM algorithm with
those obtained by applying the EM algorithm initialized with the atlas affine
registered (EM-A) or non-rigid deformed onto each of the study images (EM-
II). In this was way we intended to evaluate the impact of the registration (affine
or non-rigid) on the segmentation.

Tables 1 and 2 show mean (over the 20 images) overlap coefficients for WM,
GM and CSF for the EEM, EM-A and EM-II methods. Figure 1 shows the
results in a bar-plot form.

Table 1. Overlap coefficients (mean values) (in %) between the ground truth and
the atlas registered to the study image (affine (EM-A), integrated segmentation and
registration(EEM) and non rigid (EM-II)

EM-A EEM EM-II
WM 87.24 91.24 91.25
GM 88.74 92.47 91.95
CSF 75.54 85.18 80.97

Table 2. Overlap coefficients (mean values) (in %) between the ground truth and the
segmentation maps obtained using different algorithms (EM-A, EEM and EM-II)

EM-A EEM EM-II
WM 72.55 84.55 84.19
GM 77.19 86.89 86.29
CSF 49.35 69.39 63.00

Fig. 1. Overlap coefficients for the EM-A the EEM and the EM-II methods between
the ground truth and the registered atlas (affine or non-rigid) (left) and between the
ground truth and the computed segmentation maps (right)

As it can be observed the use of integrated segmentation and registration
leads to better overlaps results, in particular for CSF. In fact not only a better
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registration is achieved (with respect to overlap coefficients), as shown in table 2,
but also the segmentation maps obtained are improved (table 1).

3.2 PVL Brain Image

In this second experiment we had no ground truth. The results could therefore
only be evaluated in a qualitative way. Nonetheless simple visual inspection
showed the importance of combining registration and segmentation.

In figure 2 we show the segmentation results obtained by using an affine regis-
tered atlas (EM-II) and by using the EEM method. Although just in a qualitative
way, it’s clear that in this case the results generated by the standard EM method
are incorrect. As a result the CC registration algorithm can not be used since it
would register the atlas priors to the wrong segmentation solution. Figure 3 shows
the log-likelihood curves: a lower likelihood indicates a better fit of the prior (at-
las) to the posterior (classification) and therefore a better registration.

Fig. 2. PVL image (left); affine (middle) and EEM based segmentations (right)

Fig. 3. Log-likelihood curves (vs. number of iterations) for experiment 2

4 Discussion

In [8] we present a comparison between 3 information theory based similar-
ity measures. As discussed there, the CC measure, minimizing the statistical
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distance between the apriori probabilities (the atlas) and aposteriori classifica-
tion of the study image, is the best performing measure (according to the chosen
evaluation parameters) among the 3. The CC measure has to rely on the apos-
teriori classification issued from the EM algorithm and this can originate errors
when morphologically abnormal brains are involved. In order to circumvent this
problem the segmentation algorithm and the CC non-rigid registration should
cooperate in one algorithm.

In this paper we present a theoretic framework where atlas-to-study im-
age non-rigid registration and image segmentation are merged. Both processes
(non-rigid registration and segmentation) minimize the same functional, i.e. the
log-likelihood function Q. The integration framework is very general and inde-
pendent from the particular non-rigid registration regularizer. In fact we derive a
dense force field as ∂Q

∂T that can be used as input for an entire class of regularizers
(diffusion, elastic, curvature etc.).

In [1] a similar method is presented. Here we choose for a regularizer allow-
ing larger deformations to be recovered. Therefore a different optimization was
also used to compute the deformation field (gradient descent). Furthermore, we
present here an extended validation on real images (having a ground truth) of
normals and of patients (with no ground truth).

We performed two experiments. In the first experiment 20 T1 images, with
known GM, WM and CSF (from manual segmentation) were used. The images
were segmented by using different algorithms and the results were compared to
the ground truth. It turned out that the EEM algorithm performed better (espe-
cially for CSF) than the different segmentation/registration schemes (EM-A and
EM-II). The overlap coefficients related to the EEM methods were the highest
when computed between the ground truth and the deformed atlas, indicating
therefore a better registration. Better overlap coefficients (again, especially for
CSF) were also achieved when considering the segmentation maps obtained with
the different methods (EM-A, EM-II and EEM) indicating the solving registra-
tion and segmentation simultaneously (EEM) is better the solving them apart
as done in EM-A and EM-II.

In the second experiment a PVL brain image was segmented twice, the first
time using the EM algorithm (initialized by the affine registered atlas) and the
second time using the EEM algorithm. This image presents highly deformed
ventricles. As it can be seen in figure 2 the EEM outperforms the EM algo-
rithm (since we don’t have any ground truth here, only visual inspection is
used).

In the future we will focus on the extension to more than 4 classes (WM,
GM, CSF and OTHER) of the EEM algorithm. In this way we can make our
algorithm more specific for a particular application where one particular brain
structure has to be segmented and somehow quantified (for instance the hyp-
pocampus in schizofrenia). Furthermore different regularizers can be integrated
in our framework depending on the particular application.
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Abstract. The postoperative neurological management of patients with deep 
brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson’s 
disease is a complex and dynamic process that involves optimizing the stimula-
tion parameters and decreasing the anti-parkinsonian medication while assess-
ing the interactions of both treatment modalities. Neurologists who manage 
patients undergoing DBS therapy must have expert knowledge of the electro-
anatomy of the subthalamic area and be familiar with the medical treatment of 
motor and non-motor symptoms. In clinical practice, finding the optimal 
programming parameters can be a challenging and time-consuming process. We 
have developed a computerized system to facilitate one of the bottlenecks of 
DBS therapy: the IPG (Internal Pulse Generator) programming. This system 
consists of a deformable physiological atlas built on more than 300 intra-
operative macro-stimulations acquired from 30 Parkinson’s patients and of a 
non-rigid registration algorithm used to map these data into an atlas. By corre-
lating the position of the quadripolar electrode implanted in the patient with the 
information contained in our atlas, we can determine which of four contacts has 
the highest probability to be the most clinically effective.  Preliminary results 
presented in this study suggest that this approach facilitates the programming 
process by guiding the neurologist to the optimal contact. The system we 
propose was tested retrospectively on a total of 30 electrodes.  In 19 of these 
cases, this system predicted the contact that was selected as the optimal one by 
the neurologist.   

1   Introduction 

Since its first FDA approval in 1998, deep brain stimulation of the subthalamic 
nucleus (STN-DBS) has been established as an effective therapy for patients suffering 
from movement disorders [3], [4]. The therapy has significant applications in the 
treatment of tremor, rigidity, and drug induced side effects in Parkinson’s disease 
(PD). Generally, the neurologist conducts the majority of DBS programming starting 
~2 weeks after implantation. This allows the patient to recover from surgery and 
provides enough time for the transient lesional effects to resolve. Detailed principles 
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and methods used to select the optimal programming parameters have been presented 
by different authors [1], [2].  

Briefly, the first step in postoperative programming is the examination of the 
effectiveness and side effects induced by each individual contact. The electrode contacts 
are sequentially evaluated in a monopolar configuration in an effort to determine the 
contact that produces the best compromise. Frequency and pulse width are typically 
kept at constant settings of 130-180 Hz and 60-120 μs respectively. Amplitude is 
steadily increased to the tolerance level of the patient or until side effects occur. 
Repeated motor evaluation is then performed to assess the efficacy of stimulation. Ten 
to 15 minutes are allowed to pass between trials of separate contacts to allow the effects 
from previous stimulations to disappear. If a satisfactory result cannot be achieved with 
monopolar stimulation, more complex arrays consisting of bipole, tripole, or multiple 
cathodes are tried. The initial programming session, as described above, can take several 
hours and requires continuous feedback from the patient to ascertain the degree of 
benefit and to identify any side effects. This can be very taxing, especially when patients 
are kept off of medication for long periods of time. Furthermore, finding the optimal 
settings may take several trials over many months, which can be frustrating.  

Automated selection of the optimal contact would facilitate the programming 
process and reduce the length of time required to determine optimum programming 
and thus be beneficial to the patients.  In this paper, we propose a mechanism to do 
so. It consists of mapping the position of each of the contacts onto a statistical atlas, 
which assigns to each of the contacts a probability value for the contact to be the 
optimal one. This method requires several key ingredients: (1) accurate algorithms to 
register patients to the atlas, and (2) populating the atlas with data that permits the 
computation of the aforementioned probability. In our current system, the data we use 
is the response of previously implanted patients to intraoperative stimulations. In the 
remainder of this paper, we describe the method we have used as well as promising 
preliminary results.  

2   Patients and Methods 

Thirty PD patients undergoing DBS therapy have been enrolled in this study. With 
IRB approval (Vanderbilt University IRB #010809), a set of CT and MRI volumes 
were acquired pre-operatively for each patient. These were acquired with the patient 
anesthetized and head secured to the table to minimize motion. Typical CT images are 
acquired at kvp = 120 V, exposure = 350 mas, 512 x 512 voxels ranging in size from 
0.49 to 0.62 mm, and slice thickness from 1 mm to 2 mm; MR images acquired with a 
1.5T GE Signa scanner are 3D SPGR volumes, TR: 12.2, TE: 2.4, dimension 
256x256x124 voxels, typical voxels dimensions 0.85x0.85x1.3 mm³. 

The surgical procedure as well as pre- and post-operative evaluations were identi-cal 
for all 30 patients.  Seventeen of these were followed for a period of at least 6 months 
after DBS implantation and had optimal programming parameters determined by their 
neurologist or neurosurgeon.  At the time of writing, the remaining 13 patients have not 
had long enough follow-up to achieve stable programming.  

Surgical planning as well as the operative procedure performed at our institution 
has been described in detail in our previous work [6]. Briefly, pre-operative target 
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identification is performed automatically using an atlas-based method; automatically 
predicted targets are then checked by the functional neurosurgeon. This location is 
then refined intra-operatively based on the surgical team’s interpretation of 
electrophysiological recordings and responses to stimulations; this team includes a 
neurosurgeon, a neurophysiologist, and a neurologist.  

At our institution the procedure is performed with a miniature stereotactic frame, 
the StarFix microTargeting Platform® (501(K), Number K003776, Feb. 23, 2001, 
FHC, INC; Bowdoinham, ME) instead of a standard stereotactic frame. During 
surgery, a micropositioning drive (microTargeting® drive system, FHC Inc., 
Bowdoinham, ME) is mounted on the platform.  Recording and stimulating leads are 
then inserted through the guiding tubes. The StarFix platform is designed based on the 
CT images (geometric distortions that affect the markers in MR images reduce 
platform accuracy when this modality is used) and its design is such that the pre-
operative target is located on the central track. Details on the platform, including a 
study of its accuracy that shows it to be at least as accurate as standard frames can be 
found in [7]. The depth of the electrode is read from the micropositioning device and 
converted into x, y, and z CT coordinates. The x, y, and z position of each contact is 
computed using the geometry of the lead and the final intraoperative position of the 
center of the implant in CT coordinates. The implants used for these patients are the 
Medtronic 3389 implants, where the size of each contact is 0.5 mm and the gaps 
between the contacts are 0.5 mm.   

2.1   Rigid and Non-rigid Registration Algorithms 

A key component of the method we propose is our ability to map information 
acquired from a population of patients onto one reference image volume, which we 
call the atlas. Two types of registrations algorithms are needed to achieve this goal: 
rigid and non-rigid. The rigid registration algorithm is required to register MR and CT 
volumes of the same patient. This is necessary because, as mentioned above, the intra-
operative positions of the electrode contacts provided by the micropositioning drive 
are in CT coordinates. The algorithm we have used to register MR and CT images of 
the same patient is an independent implementation of a standard Mutual Information-
based algorithm [6]. Non-rigid registration is required to register patient data to the 
atlas and vice-versa. In this study, non-rigid registration is always performed on MR 
image volumes using an algorithm we have proposed recently [5]. Briefly, this 
algorithm computes a deformation field that is modeled as a linear combination of 
radial basis functions with finite support. The similarity measure we use is the Mutual 
Information between the images. We also compute simultaneously two transforma-
tions (one from the atlas to the subject and the other from the subject to the atlas) that 
are constrained to be inverses of each other.  

While validation of non-rigid registration algorithms is an open-ended problem, in 
[6] we demonstrate our ability to register accurately MR volumes for STN-DBS 
implantation tasks. This, in turn, indicates that we are able to register accurately the 
patient volumes to the atlas.  
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2.2   Intra-operative Efficacy Atlas 

Intra-operatively, macro-stimulation is performed to determine the optimal implant 
position. While targeting the STN, stimulation is applied approximately every 2 mm 
along the track, starting at the boundary of the STN, which is determined by micro-
electrode recordings (MERs) acquired prior to stimulation. At every position, stimula-
tion is typically performed with voltages starting at 0.5 V up to 5 V by 0.5 V increments. 
The effect of the stimulation on rigidity, muscle tone, bradykinesia, paresthesias, muscle 
contraction, eye movements and subjective sensations are assessed for every voltage.  
The optimal voltage is determined at each position and the loss of rigidity expressed in 
percent is recorded for this voltage. Because we can map the intra-operative coordinates 
of a patient’s electrode onto the atlas, any information acquired intra-operatively can be 
projected onto the atlas. This, in turn, permits the creation of a number of statistical 
maps relating spatial coordinates in the atlas to characteristics measured intra-
operatively. In [6] we have, for instance, shown that it is possible to create maps of 
features extracted from MERs. This study showed that maps of the mean spike rate can 
be used to define the boundary of the STN in the atlas. In this work, we have focused on 
developing maps that can provide useful information to the neurologist for 
programming. The key idea is to create an atlas that associates position with the efficacy 
of each electrode contact.  Here, we define efficacy as being (1) proportional to the 
percent of loss of rigidity; (2) proportional to the therapeutic window, which equals the 
difference in voltage required to achieve this loss of rigidity (V) and the voltage at 
which side effects occur (VSE); and (3) inversely proportional to V.  A position is good 
if the percent of loss of rigidity is high, V is low, and the difference between VSE and V 
is large. To create an atlas that captures this information, we first map the intra-
operative stimulation position onto the atlas. At each position, we then center a 
Gaussian curve defined as follows: 
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Fig. 1. Physiological stimulation map. White values represent a high likelihood to get good 
stimulation results, dark gray represents low likelihood to get good stimulation results. The 
star represents the optimal point in the atlas at which to place the implant when targeting the 
STN [6]. 
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A point with a small stimulation voltage and a high loss of rigidity (in percent) will 
thus be associated with a curve with a small standard deviation and large amplitude.  
We repeat this procedure for every point for which we have intra-operative 
information and we produce a statistical atlas by averaging all these curves. In this 
atlas, a point associated with a curve that has a small standard deviation and large 
amplitude has a large but localized effect on the atlas. A point with a large standard 
deviation has a smaller impact that extends over a larger region.  Fig. 1 illustrates 
results obtained with this method.  In this figure, white means a high probability of 
obtaining good efficacy while dark gray means low probability of obtaining good 
efficacy. The black star is the average intra-operative position of the centers of all 
electrodes mapped onto the atlas for each side.   

2.3   Atlas-Based Contact Selection 

Once the atlas is created it can be used post-operatively to assist the neurologist in 
selecting the optimum contact for stimulation. To achieve this, the position of the 
patient’s electrode is first mapped onto the atlas.  The contact that falls into the area 
on the atlas corresponding to the highest probability of good efficacy would be the 
optimum contact for stimulation.   

3   Results and Discussion 

Table 1 shows quantitative results we have obtained with the method we’ve developed. 
We correlated the efficacy probability from our atlas to each contact in the 17 subjects 
included in the study. In table 1, the numbers in gray are the contacts selected by the 
neurologist. Contacts are numbered from C0 (distal contact) to C3 (proximal contact). 
The column labeled “V” is the amplitude of the therapeutic voltage. 

Results show that about 60% of the contacts selected by the neurologist are the 
contacts with the highest efficacy probability in our atlas. Albeit preliminary, this 
supports the feasibility of using a statistical atlas to facilitate the programming 
process. A more detailed analysis of this process also suggests that using predictions 
from our atlas may shorten the time required to reach stable programming. For 
example, programming notes from the neurologists for patient P3 show that contact 
C1 was tried first on the right side before moving to C2 which produced better results. 
For patient P11 the C0 contacts were first tried on both sides before moving to 
contacts C2. A similar trend has been observed for the left implant in patient P12. 
Here, the neurologist moved from contact C3 to C2. For patient P15, contact C1 on 
the left side was observed to have a better effect on rigidity than contact C2.  

For a few cases, the optimal electrode predicted by our atlas has been tried and 
rejected.  In patient P16, contacts C0 and C1 were tried but not selected because these 
caused significant side effects.  These effects were reduced with contact C3 but this 
particular patient still has significant rigidity and bradykinesia. For a number of cases, 
the optimal electrode predicted by our atlas has not been tried or programming 
records have not been available. Therefore, whether or not the electrode our atlas 
predicts would have led to better results cannot be determined.  
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Table 1. Shows, for 17 STN patients, the likelihood of the four contacts to produce  good 
stimulation results. The number in gray shows the contact that was selected as the best one by 
the neurologist. Contacts are numbered from C0 to C3 (bottom to top contact). V shows the 
therapeutic voltage that was used. 

 

The results presented in this study demonstrate that a computer-assisted method can 
be developed to facilitate what remains a bottleneck in DBS therapy. A number of 
improvements on the method presented herein are currently being developed. First, a 
prospective validation study has been initiated. Rather than verifying that the electrode 
we propose is the optimal one after programming has been completed, we will propose 
the optimal contact to the neurologist at the time of initial programming. We have 
followed this approach when developing and validating our automatic pre-operative 
target prediction for DBS implantation [6]. Second, at the time of programming, we will 
provide the neurologist with a 3D display of the position of the electrodes in the efficacy 
map overlaid on high resolution MR images.  This will permit correlation of these posi-
tions with anatomy, thereby facilitating spatial orientation and navigation between the 
contacts. Third, as the number of patients increases, we will create maps of side effects. 
Currently, we only use a crude definition of efficacy: reduction in rigidity weighted by 



150 P.-F. D’Haese et al. 

the therapeutic voltage window (i.e., the difference between the voltage required to 
suppress the symptoms and voltage inducing side effects).  We will refine this definition 
to improve the way side effects are taken into consideration. To achieve this, we will 
create maps of side effects as we have done for our current definition of efficacy. This 
will permit an automatic multi-parameter optimization procedure that will minimize 
side effects while maximizing the positive effects of the stimulation.  
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Abstract. Mutual information based nonrigid registration of medical
images is a popular approach. The coordinate mapping that relates the
two images is found in an iterative optimisation procedure. In every
iteration a computationally expensive evaluation of the mutual infor-
mation’s derivative is required. In this work two acceleration strategies
are compared. The first technique aims at reducing the number of it-
erations, and, consequently, the number of derivative evaluations. The
second technique reduces the computational costs per iteration by em-
ploying stochastic approximations of the derivatives. The performance of
both methods is tested on an artificial registration problem, where the
ground truth is known, and on a clinical problem involving low-dose CT
scans and large deformations. The experiments show that the stochastic
approximation approach is superior in terms of speed and robustness.
However, more accurate solutions are obtained with the first technique.

1 Introduction

Nonrigid registration is an important technique in medical image processing. A
popular class of registration methods is based on maximisation of the mutual
information similarity measure, in combination with a deformation field param-
eterised by cubic B-splines [1,2]. The large computation time of this approach is
a big disadvantage for many clinical applications. For practical use, acceleration
is required.

Registration is usually stated as a minimisation problem:

μ̂ = arg min
μ

C (μ; IF , IM ) , (1)

where C(μ; IF , IM ) denotes a cost function, and μ a vector of parameters defin-
ing the deformation field that relates the fixed image IF and the moving image
IM . In this paper the cost function is defined as the negated mutual information
similarity metric, and the deformation field is parameterised by cubic B-splines,
whose coefficients form the vector μ. To find the solution μ̂ an iterative op-
timisation strategy is employed. In many optimisation methods the parameter
update in each iteration k is based on the derivative of the cost function C with
respect to the parameters μ. The gradient descent algorithm [3] is the most
straightforward example:
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μk+1 = μk − akg(μk), k = 0, 1, 2, . . . , (2)

where g(μk) represents the derivative of the cost function, ∂C/∂μ, evaluated
at μk. A scalar gain, ak, controls the step size. Within certain conditions, the
sequence {μk} defined by (2) converges to a local minimum of the cost function.

Computation of the derivatives, g(μk), requires a considerable amount of
computational effort in nonrigid registration problems. In this work two acceler-
ation strategies are compared. The first technique aims at reducing the number
of iterations, and, consequently, the number of required derivative evaluations.
Well-known methods with an improved rate of convergence are the quasi-Newton
and nonlinear conjugate gradient [3]. The second technique focusses on the com-
putational costs per iteration by using approximations of g(μk). Acceleration
factors are given with respect to the performance of the standard gradient de-
scent method.

The acceleration strategies are compared in two types of experiments. Firstly,
an artificially created problem is considered. An image is registered to itself,
after application of a known, randomly generated deformation. Secondly, the
registration of a low-dose expiration CT chest scan to a high-dose inspiration
scan of the same patient is used as a test problem.

2 Nonrigid Registration Framework

In this section the various components of the nonrigid registration framework
are described. The design of our algorithm is largely based on the papers by
Mattes et al. [1], Rueckert et al. [2], and Thévenaz and Unser [4].

For computation of the mutual information the approach described in [4] is
used. The joint histogram is constructed using B-spline Parzen windows, which
makes it possible to formulate the mutual information as a continuous, differen-
tiable function of the parameters describing the deformation field. In all exper-
iments described in this paper, the joint histogram size is set to 32 × 32. The
deformation field is parameterised by B-splines.

The minimisation problem (1) is solved with a multiresolution strategy. For the
image data, we use a Gaussian image pyramid. The complexity of the deforma-
tion model is defined by the B-spline control point resolution. In our tests we let
it follow the image resolution: when the image resolution is doubled, the control
point resolution is doubled as well. The number of resolution levels and the final
B-spline control point spacing depend on the specific problem. At each resolution
a minimisation is performed, using one of the tested optimisation methods. When
necessary, images are rigidly registered before the nonrigid registration.

3 Acceleration Strategies

A standard gradient descent algorithm, see (2), is used as a benchmark, to which
further results are compared. The method is implemented using a slowly decaying
gain sequence:
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ak = a/(A + k + 1)α , (3)

where a > 0, A ≥ 0, and 0 ≤ α ≤ 1 are user-defined constants.

3.1 Acceleration by Faster Convergence

In the literature many optimisation methods can be found with (theoretically)
a better rate of convergence than the gradient descent. Perhaps the most well-
known ones are the quasi-Newton and nonlinear conjugate gradient methods.

Quasi-Newton methods [3] use the following iterative scheme:

μk+1 = μk − akLkg(μk) . (4)

In this equation, Lk is a positive definite matrix that serves as an approximation
to the inverse Hessian of the cost function. For computation of the matrix Lk

second order derivatives of the cost function are not needed; only the already
computed first order derivatives are used. The scalar ak is again a gain factor
that controls the step size.

Several ways to construct the series {Lk} are proposed in the literature. The
method used in this work is a popular variant of the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm: the Limited memory BFGS (LBFGS) [5], which elim-
inates the need for storing the matrix Lk in memory.

Quasi-Newton methods are usually implemented in combination with an inex-
act line search routine, which determines a gain factor ak that ensures sufficient
progress towards the solution. In this work we use the line search routine de-
scribed by Moré and Thuente [6]. If no gain factor can be found that gives
sufficient progress, the optimisation is assumed to have converged.

Nonlinear conjugate gradient methods [3, 7] are based on the following itera-
tive scheme:

μk+1 = μk + akdk , (5)

where the search direction dk is defined as a linear combination of the current
derivative g(μk) and the previous search direction dk−1:

dk = −g(μk) + βkdk−1 . (6)

Many expressions for the scalar βk can be found in the literature [7]. In this
study we use a so-called ‘hybrid’ version, proposed in [8] and shown to be very
efficient compared to other methods. The gain factor ak is determined by the
same inexact line search routine as used with the quasi-Newton method.

3.2 Acceleration by Stochastic Approximation

By using approximated derivatives instead of the exact ones the computation
time per iteration can be reduced significantly.

The computation time of the derivative of mutual information is linearly
dependent on the number of voxels |IF | in the fixed image, and on the number
of B-spline coefficients N (the length of the parameter vector μ):

tg(μk) ∼ p|IF | + qN , (7)
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where p and q are constants. For most medical nonrigid registration problems
p|IF | tends to be much larger than qN . It is clear that we can lower the com-
putation time of a derivative evaluation by not using all the voxels, but only a
small subset of voxels.

In [9] it is demonstrated that, when using a new, randomly selected, subset
of voxels in every iteration of the optimisation process, the parameter sequence
{μk} still converges to the correct solution. Selecting a new subset of voxels in
every iteration ensures that the approximation errors will, on average, cancel
each other out. The approximation errors can be considered a source of noise εk

entering the optimisation process:

μk+1 = μk − ak (g(μk) + εk) . (8)

This scheme is often referred to as a stochastic gradient descent algorithm or
a Robbins-Monro procedure [10, 11]. It can be proven that the sequence {μk}
defined by (8) still converges to the solution μ̂, provided that the bias of the
approximation error goes to zero.

The experiments in [9] indicate that for the registration of large 3D images as
few as 2048 voxels are required in each iteration, which is adopted in our tests.
The gain sequence {ak} is defined as in the gradient descent method, see (3).

3.3 Combining the Acceleration Strategies

Naturally, the question rises whether it is possible to combine the two accelera-
tion strategies. Unfortunately, the quasi-Newton and nonlinear conjugate gradi-
ent optimisation methods are not designed to work with stochastic approxima-
tions of the derivatives. They expect noise-free derivatives to be available.

A possible strategy for these methods is to select a single subset of voxels in
the fixed image and use these samples throughout the registration process [12,1].
A disadvantage of this method is that convergence to the correct solution cannot
be guaranteed, because the approximation error bias does not go to zero.

In our tests with quasi-Newton and nonlinear conjugate gradient the samples
are selected on a regular grid using identical downsampling factors for each image
dimension.

4 Experiments and Results

In two types of nonrigid registration problems, the following methods are com-
pared:

– Gradient Descent (GD), see Sec. 3,
– Quasi-Newton (QN-df ), see Sec. 3.1,
– Nonlinear Conjugate Gradient (NCG-df ), see Sec. 3.1,
– Stochastic Gradient Descent (SGD), see Sec. 3.2.

The extension df denotes the downsampling factor. Downsampling factors of 1
(full image), 2, 4, 8, and 16 are tested. In case of GD, the full image is always
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used. As explained in Sec. 3.2, the SGD method uses only 2048 voxels to calculate
the derivatives.

For all optimisation methods, the computation time per iteration is assumed
to be dominated by the time required for computing the derivative of the mu-
tual information. Moreover, the derivative’s computation time is assumed to be
mainly related to the number of voxels used. These simplifications allow us to
define the normalised computation time (NCT) up to iteration k of the optimi-
sation process:

NCT = (k + 1)V/|IF | , (9)

with V the number of voxels used to compute the derivative.

4.1 Artificial Deformation Fields

In the first evaluation procedure an image I is registered with a deformed version
of itself. To avoid interpolation errors, the deformation field ṽ is added to the
B-spline deformation field vμ that is updated during optimisation. Since the
image I is registered with itself, the desired solution is a total deformation field
that is zero everywhere. The ground truth is known, so an error measure, the
average displacement error e, can be defined:

e(μ) =
1
|I|

∑
xi∈I

‖ṽ(xi) + vμ(xi)‖ , (10)

where xi is the position of voxel i in the image volume I, and |I| the total
number of voxels in I. The speed of convergence of a method is visualised by
plotting this error measure against the normalised computation time NCT.

The experiments are performed on four 3D CT images of the heart. The im-
ages originate from chest scans. These were cropped to the area of the heart and
downsampled by a factor of two, resulting in images of 97×97×97 voxels with an
isotropic size of 1.4mm. For each image a deformation field ṽ is generated, com-
posed of randomly placed Gaussian blobs with a standard deviation of 14mm.
A 10 × 10 × 10 grid of B-spline control points defines the deformation field vμ,
yielding 3000 parameters to be optimised. No multiresolution schemes are used
in this experiment, which makes comparison of the results more straightforward.
The maximum number of iterations is limited to 2048. Three constants must be
set for the gain sequence in (3): a = 3200, A = 50, and α = 0.602.

In the following we present the test results for one of the four images. The
outcome for the other images is similar. Figure 1 shows the average displacement
error as a function of the normalised computation time for the tested methods.
A logarithmic scale is used for the time axis. It is clear that both acceleration
strategies realise considerable speed improvements compared to the standard GD
procedure. The QN and NCG method do not give acceptable results anymore
with a downsampling factor of 8, which results in 2197 selected voxels. The
methods QN-16 and NCG-16, which are omitted from the figure, perform even
worse. Without downsampling QN and NCG achieve a slightly higher accuracy
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Fig. 1. Results for one of the heart images. The graph shows the average displacement
error as a function of the normalised computation time for the tested methods.
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Fig. 2. The imposed deformation field is composed of Gaussian blobs with a standard
deviation of 7mm. The graph shows the average displacement error as a function of
the normalised computation time for the tested methods.

than the GD and SGD method. The SGD method, which works well with only
2048 voxels, is clearly the fastest.

The tests are repeated for a more difficult registration problem. The imposed
deformation field ṽ is composed of Gaussian blobs with a standard deviation of
7mm. This smaller standard deviation results in a deformation field that is very
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hard to recover, since the B-spline control point grid used during registration is
not dense enough. The test results for the same image as before are shown in
Fig. 2. It is interesting to see that the QN and NCG methods can not handle this
very ill-posed registration problem. The GD and SGD procedures remain stable.
As expected, none of the optimisation methods is able to achieve a very large
reduction of the initial average displacement error, since the B-spline control
point grid is not fine enough.

Note that the QN and NCG methods do still find a set of parameters that
decrease the mutual information. The Moré-Thuente line search, employed in
both QN and NCG to set the gain factor ak, guarantees that the cost function
decreases in every iteration, C(μk) < C(μk−1). However, in an ill-posed problem
a decreasing cost function does not imply that actual progress is made towards
the correct solution.

4.2 Clinical Data

In this section a number of experiments with 3D CT chest scans are described.
The patients were scanned after inspiration and after expiration. The inspiration
scans were recorded with a high radiation dose; the expiration scans with a low
dose. The large deformations in combination with the noisy nature of the low-
dose scans make this a challenging registration problem.

The images were acquired with a Philips Mx8000IDT 16-slice CT scanner.
We use data of seven patients. The original images, with in-plane dimensions of
512×512 and a number of slices ranging from 400 to 800, were downsampled by
a factor of 2 in each dimension to be able to register the images on a standard PC
with one gigabyte of memory. The resulting voxel size is approximately 1.4mm
in all directions, and the images consist of about 107 voxels.

A four-level multiresolution approach is applied. At each resolution the num-
ber of iterations is fixed to 256. At the highest resolution the B-spline control
point spacing is set to 22mm, yielding a grid of about 193 control points (approx-
imately 20000 parameters). The following settings are used for the gain sequence
in GD and SGD: a = 60000, A = 50, and α = 0.602.

As is common in clinical applications of nonrigid registration, the ground
truth is not known. We assess the registration results by computing the overlap
of the lungs, L1 and L2:

Overlap =
2 · |L1 ∩ L2|
|L1| + |L2|

. (11)

Segmentations of the lungs were made by means of a method based on the
work of Hu et al. [13]. In the segmentations large pulmonary vessels are not
considered part of the lungs. For reference: a translation of one voxel in each
dimension results in a lung overlap of about 0.95.

Table 1 shows the overlap measures after rigid registration and nonrigid reg-
istration with the studied methods. Each column displays the results for a single
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Table 1. The results of CT chest scan registration for patients P1-P7. The overlap of
segmented lungs is shown after rigid registration (first row), and after nonrigid regis-
tration with different methods. Each column contains the results for a single patient.

P1 P2 P3 P4 P5 P6 P7

rigid 0.736 0.453 0.729 0.883 0.654 0.811 0.671

GD 0.925 0.802 0.951 0.972 0.951 0.975 0.914

SGD 0.922 0.799 0.945 0.966 0.945 0.972 0.909

QN-1 0.932 0.855 0.956 0.974 0.962 0.979 0.930
QN-2 0.931 0.836 0.955 0.973 0.960 0.979 0.926
QN-4 0.926 0.815 0.951 0.971 0.955 0.975 0.916
QN-8 0.905 0.797 0.934 0.960 0.936 0.965 0.898
QN-16 0.862 0.751 0.906 0.938 0.897 0.946 0.858

NCG-1 0.931 0.795 0.941 0.966 0.942 0.969 0.929
NCG-2 0.912 0.796 0.955 0.973 0.961 0.969 0.904
NCG-4 0.911 0.792 0.940 0.966 0.943 0.969 0.903
NCG-8 0.895 0.794 0.935 0.959 0.934 0.965 0.894
NCG-16 0.854 0.752 0.903 0.938 0.900 0.946 0.858

patient. All methods result in a considerable improvement on the rigid regis-
tration. The overlap measures confirm the results found in Sec. 4.1. The final
accuracy of the nonrigid registration is, compared to GD, very little affected by
the random subsampling strategy employed by SGD. The methods QN-1, QN-2,
NCG-1, and NCG-2 result in a somewhat better accuracy than GD and SGD.
With higher downsampling factors the accuracy decreases.

The most remarkable results are found in patient P2. The QN-1 and QN-2
methods seems to outperform all other methods. However, visual inspection of
the results taught us that the good overlap results come at the price of some very
unrealistic deformations. In patients P5 and P7 the same problem was observed
for the QN and NCG methods. The GD and SGD procedures only have this
problem in patient P5. This is in line with the results of Sec. 4.1, where GD and
SGD also seem to be more robust than QN and NCG.

5 Conclusion

We have compared acceleration techniques for both artificially deformed and real
clinical data. The experiments indicate that SGD achieves the largest accelera-
tion, and seems to be more robust for badly defined problems than the QN and
NCG algorithms. Without downsampling QN and NCG yield a slightly smaller
error than GD or SGD. Downsampling increases the error, and does not result
in the same acceleration as obtained by SGD.

In summary, we can conclude that the acceleration technique focussing on
reduction of the computational costs per iteration is the preferred approach.
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Abstract. In this paper we propose a protocol for the evaluation of similarity 
measures for non-rigid registration. The protocol is feasible for the evaluation 
of non-rigid registration in which the deformation model is based on a set of 
regularly or irregularly distributed corresponding point pairs. The proposed pro-
tocol is able to deduce five properties of the similarity measure for each point 
pair of the deformation model, so that local or global estimation of the similar-
ity measure properties can be derived. The feasibility of the proposed protocol 
was demonstrated on a popular deformation model based on B-splines, on six 
similarity measures, and on the “gold standard” CT and MR images of three 
spine vertebrae and three MR T1 and T2 images of the head. 

1   Introduction 

Medical image registration has emerged as a particularly active field due to many 
clinical applications. A general overview of registration techniques is given in [1, 2]. 
Image registration is concerned with finding a spatial transformation that will bring 
two images into spatial correspondence. According to the nature of geometrical trans-
formation, registration techniques can be divided into rigid and non-rigid ones. A 
rigid transformation is composed of rotations and translations, while non-rigid trans-
formation can be modeled by the spline warps, truncated basis function expansions, 
Navier-Lamé equations, or by a viscous fluid model. Non-rigid registration is of great 
importance for integration of complimentary information of mono-modal temporal 
images or multimodal images of the same anatomy. Other possible applications of 
non-rigid registration are inter-subject registration, by which anatomical variations 
within a certain population can be studied, or atlas to patient registration by which 
arbitrary information from the atlas can be transferred to the patient. 

The accuracy and robustness of a registration method depends on the imaging mo-
dality, image content, image quality, spatial transformation, similarity measure, opti-
mization, and numerous implementation details. The complex interdependence of 
these factors makes the assessment of the influence of a particular factor on registra-
tion difficult. Consequently, several methods for validation of registration methods 
have been proposed [3-6]. One of the major obstacles in validation of registration 
methods is a lack of true anatomic correspondence between the images, called “gold 
standard”, which can usually be established only for a limited set of image pairs. This 
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problem is especially apparent in the evaluation of non-rigid registration for which a 
precise correspondence between all image points cannot be established for real im-
ages. To overcome this problem numerical simulations of the deformations have been 
proposed [6].  

The similarity measure is one of the factors that most affect the quality of registra-
tions. Traditionally, limited information on the behavior of a similarity measure is 
obtained either by studying the quality of the final registration or by drawing plots of 
similarity measure as a function of spatial transformation parameters. In our previous 
publication [7] we have presented a protocol for a more thorough and optimization-
independent evaluation of similarity measures for rigid registration (http://lit.fe. 
uni-lj.si/Evaluation).  

In this paper we extend the protocol to evaluate the similarity measures for  
non-rigid registrations. We show that the protocol is feasible for the evaluation of 
similarity measures that are based on a set of regularly or irregularly distributed corre-
sponding point pairs, for example, when spatial deformations are modeled by spline 
warps or by truncated basis functions.  

2   Methods and Materials 

2.1   Evaluation Protocol 

To evaluate the similarity measure for non-rigid registrations, we derive several prop-
erties that characterize the behavior of similarity measures for each pair of corre-
sponding pairs of the spatial deformation model. For this purpose a “gold standard” 
registration between the floating and the target image is needed. The similarity meas-
ure is a function of all the parameters of the deformation model. In 3D, each point 
pair can be displaced in x, y or z directions so that the number of parameters of the 
deformation model is three times larger than the number of corresponding point pairs. 
However, to derive the properties of the similarity measure for a single point pair, all 
the other point pairs can be fixed, so that the similarity measure can be looked upon as 
a function of the displacement of only one pair of corresponding points.  

Let the “gold standard” position of the analyzed point pair define the origin X0 of 
the 3-dimensional parametrical space (x, y and z) and let SM(X) be the value of a 
similarity measure at point X; X=[x,y,z] in this space. Similarity measure values 
SM(Xn,m) are defined along N lines and at M+1 points evenly spaced on each of the N 
lines, defined by a randomly selected starting position Xn,-M/2 at a distance R from the 
origin X0 and its mirror point Xn,M/2; Xn,-M/2=-Xn,M/2. The number of lines N were de-
termined experimentally [7] so that the properties of the similarity measures did not 
change if N was increased. Before computing the similarity measure profiles along 
each of the N lines and for each point pair, all the other point pairs can be randomly 
displaced from the “gold standard” position for a predefined distance RD by which a 
more realistic simulation of the registration process can be achieved. All similarity 
measure values are normalized to the interval [0, 1] according to the minimal and 
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maximal values of the similarity measure before normalization. For each point pair 
the properties of the similarity measures are computed from the obtained similarity 
measure profiles along the N lines: 

1. Accuracy (ACC) of a similarity measure is defined as the root mean square 
(RMS) of distances between the origin X0 and the positions Xn,opt, n=1, 2, …, N 
along the N lines, where the SM(X) reaches an optimum. 

2. Distinctiveness of optimum (DO) is the estimation of the uncertainty of the lo-
cation of the optimum for a given point pair.  

3. Capture range (CR) is defined as the smallest of the N distances between the 
optima and the closest minima. 

4. Number of minima (NOM(r)) is the sum of minima of the similarity measure 
within distance r from each of the N global optima, i.e. a cumulative number of 
minima as a function of distance r. 

5. Risk of nonconvergence (RON) is the property that describes the number and 
extent of a similarity measure around the N global optima. 

Details on the computation of the similarity measure properties can be found in [7] 
and (http://lit.fe.uni-lj.si/Evaluation). The first two properties describe the behavior of 
similarity measure close to the “gold standard”, while the last three properties esti-
mate the robustness of a similarity measure.  

2.2   Images 

We have used the MR and CT images of three spine vertebrae L2, L3 and L4 [8] and 
three MR T1 and T2 images of the head1 for which “gold standard” rigid registrations 
were known. Fig. 1 shows 2D slices of some of the 3D images used in the experi-
ments. For the vertebrae the rigid “gold standard” transformation was obtained using 
fiducial markers while for the brain images stereotactic frames were used to compute 
the best rigid match. 

     

Fig. 1. T1 and T2 slices of the 3D image of head (left) and MR and CT slices of the 3D image 
of the L3 vertebra (right) 

2.3   Deformation Model 

Among numerous existing spatial deformation models, based on a set of regularly  
or irregularly distributed corresponding points, we have chosen one of the most  

                                                           
1 http://www.loni.ucla.edu/ICBM/ 
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frequently used ones, i.e. the model based on B-splines interpolation [9] which was 
proposed for non-rigid registration by Rueckert et. al.[10]. The deformation model is 
defined on a set of regularly spaced point pairs, termed knots. The number of knots 
defines the flexibility, while the degree of the B-splines defines the smoothness of the 
interpolation. 

In our experiments we have used 3rd degree B-splines and a 3D grid of 7×7×7 
knots. The evaluation of the five properties of the similarity measures was performed 
on the 5×5×5 central knots (375 parameters of the deformation model), while the 
knots on the edges were fixed. Before computing the similarity measure profile along 
each of the N lines for each knot all the other knots were randomly displaced from the 
“gold standard” position for a distance RD = 1 mm by which a more realistic simula-
tion of the registration process was achieved (Fig. 2).  

A

B

 

Fig. 2. Left: deformed image in all knots for RD = 1 mm (left), except for the knot in a dark 
circle, which was fixed. Right: the same image with the knot that was fixed in the left image 
displaced for 20 mm. The points (A, B) illustrate the knots for which results are given in 
Table 1. 

3   Results 

In the results section we show how the mutual information (MI) [11, 12], normalized 
mutual information (NMI) [13], recently proposed asymmetric gradient based multi 
feature mutual information (AMMI) [14], correlation ratio [15], entropy (H) and en-
ergy of the histogram (E) similarity measures behave when different parts of vertebra 
and brain are deformed. Partial volume interpolation [11] was used to compute the 
joint histogram for all six similarity measures. The parameters of the evaluation pro-
tocol R, N and M were set to 20 mm, 50 and 80, respectively. 

Fig. 3 shows interpolated values of the five similarity measure properties of MI for 
the vertebrae L2-L4. The values of the properties are printed in the legend to the right 
of each image. For all three vertebrae, mutual information is more accurate and robust 
in the spinous process and lamina area than in the area of the vertebra bodies. 

Fig. 4 shows five properties for non-rigid registration of three sets of real MR T1 
and MR T2 images. It can be seen that mutual information is less accurate and robust 
in the parietal lobe area. The robustness is also poor in the frontal lobe area. The re-
sults among different images are consistent. 
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 L2 L3 L4 

ACC [mm]  

DO [10-3/mm]  

CR [mm]  

NOM  

RON [10-6/mm]  

Fig. 3. Five properties (from top to bottom) of MI for non-rigid registration of MR and CT 
images of the L2 (left), L3 (middle) and L4 (right) vertebrae. Contours the vertebrae are over-
laid on each image. 

Table 1 shows quantitative results of the evaluation of the 6 similarity measures for 
non-rigid registration of three sets of MR and CT images of the three vertebrae. Local 
comparison of the similarity measures is given for the points A and B, while average 
similarity measure properties for all points provide a global comparison of similarity 
measures. Both MI and NMI are accurate and robust around the spinous process and 
lamina (point A), i.e. where AMMI is also robust but less accurate. In the body area 
(point B) MI and NMI are less accurate, while AMMI is far more accurate but less ro-
bust. Global comparisons in which the average and standard deviations of the five 
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 P1 P2 P3 

ACC [mm]  

DO [10-3/mm]  

CR [mm]  

NOM  

RON [10-6/mm]  

Fig. 4. Five properties (from top to bottom) of MI for non-rigid registration of three pairs of 
MR T1 and MR T2 images of the head. A corresponding contour of the skull and corpus callo-
sum is overlaid on each image 

properties for all points and images, given at the bottom of Table 1, show that MI and 
NMI have very similar properties. In general, AMMI is more accurate but less robust 
similarity measure than MI and NMI. COR is the least accurate out of all analyzed  
measures. 

Global comparisons of the similarity measure properties for the three sets of MR 
T1 and T2 images of the brain are given in Table 2. Also for the brain images, we can 
conclude that AMMI is more accurate but less robust similarity measure than MI and 
NMI. Again, MI and NMI have very similar values of the properties, which are much 
better than of COR, H and E. 
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Table 1. The properties of the three most accurate similarity measures for non-rigid registration 
of three sets of MR and CT images of the vertebrae. The point A (see Fig. 2) is where MI was 
accurate and robust while the point B is where MI was less accurate and robust.  

MI NMI AMMI 
Local comparison: Point A 

 

L2 L3 L4 L2 L3 L4 L2 L3 L4 
ACC 1.2 1.4 0.6 1.1 1.4 0.5 3.2 1.4 0.8 
DO 3.0 3.1 5.2 2.8 3.1 5.4 6.3 6.4 11.8 
CR 1.0 0.5 0.4 1.0 0.9 7.0 0.5 0.5 0.4 
NOM 0.1 0.1 0.1 0.1 0.0 0.1 3.6 6.8 10.9 
RON 2.0 6.1 6.1 2.8 4.3 7.2 585.3 1071.5 1447.6 
 Local comparison: Point B 
ACC 2.5 6.7 2.2 2.3 6.0 1.9 0.6 0.9 0.5 
DO 2.1 3.4 3.5 2.4 3.0 3.8 10.2 10.0 15.1 
CR 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 
NOM 3.4 3.8 2.7 3.6 4.3 2.6 21.7 19.1 23.5 
RON 1139.2 2376.3 1302.2 1093.5 1901.8 1129.4 3106.6 2826.0 4057.2 

Global comparisons: Average values (std) of the five properties  
MI NMI AMMI COR H E 

ACC 2.7 (1.7) 2.6 (1.7) 1.2 (0.7) 4.5 (2.7) 3.5 (1.8) 3.3 (1.4) 
DO 2.8 (1.4) 2.8 (1.3) 9.4 (2.9) 1.9 (1.5) 1.5 (0.6) 1.2 (0.7) 
CR 0.5 (0.2) 0.7 (0.8) 0.5 (0.0) 0.5 (0.1) 0.5 (0.0) 0.5 (0.0) 
NOM 1.4 (1.1) 1.4 (1.1) 14.5 (6.3) 2.9 (1.6) 2.4 (1.2) 4.4 (1.7) 
RON 388 (686) 326 (554) 2020 (1166) 641 (795) 228 (247) 324 (259) 

Table 2. The properties of the six similarity measures for non-rigid registration of three sets of 
MR T1 and MR T2 images of the brain  

Global comparisons: Average values (std) of the five properties  
MI NMI AMMI COR H E 

ACC 2.8 (1.0) 2.8 (1.0) 0.9 (0.5) 7.7 (4.1) 4.2 (2.3) 6.5 (3.3) 
DO 1.9 (0.7) 1.8 (0.7) 7.6 (2.4) 2.3 (2.3) 0.9 (0.4) 0.5 (0.3) 
CR 0.4 (0.1) 0.4 (0.1) 0.4 (0.0) 0.5 (0.2) 0.4 (0.1) 0.4 (0.1) 
NOM 1.6 (2.3) 1.7 (2.2) 15.0 (7.0) 1.7 (1.1) 2.8 (2.2) 3.0 (2.1) 
RON 107 (157) 105 (151) 1565 (1054) 1095 (1546) 220 (319) 210 (314) 

4   Conclusion 

We have extended the protocol for evaluation of similarity measures for rigid registra-
tion [7] to the evaluation of non-rigid registration, which is based on a set of regularly 
or irregularly distributed corresponding point pairs. With the proposed protocol we 
are able to deduce five properties of the similarity measure for each point pair of the 
deformation model, so that local estimation of the similarity measure properties can 
be derived. The feasibility of the proposed protocol was demonstrated on the “gold 
standard” CT and MR images of three spine vertebrae and three MR T1 and T2 im-
ages of the head. Non-rigid registration is often needed for this kind of images  
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because, for example, brain can deform by up to 20 mm after the skull is opened dur-
ing neurosurgery [16] or because MR images can be geometrically deformed due to 
the inhomogeneity of the magnetic field.  

The proposed protocol enables quantitative local and global estimation of the simi-
larity measure properties for non-rigid registration. The results of such evaluations 
can help the researchers to select the best similarity measure and the appropriate op-
timization scheme for a given registration task. The protocol may also be useful for 
studying the best combination of similarity measures by which robust and accurate 
non-rigid registration can be achieved. For example, the results of this study suggest 
that registration process should start with MI or NMI and continue with AMMI simi-
larity measure. 
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Abstract. We examine non-rigid image registration by knotpoint mat-
break ching. We consider registering two images, each with a set of knot-
points marked, where one of the images is to be registered to the other
by a nonlinear warp so that the knotpoints on the template image are
exactly aligned with the corresponding knotpoints on the reference im-
age. We explore two approaches for computing the registration by the
Geodesic Interpolating Spline. First, we describe a method which exploits
the structure of the problem in order to permit efficient optimization
and second, we outline an approach using the framework of classical
mechanics.

1 Introduction and Formulation of Problem

We develop methods for computation of the Geodesic Interpolating Spline (GIS)
as described by Marsland and Twining in [1]. A comprehensive survey of regis-
tration methods is given in [2]. The GIS was developed from the thin-plate spline
[3] and clamped-plate spline [4] to provide diffeomorphic mapping between im-
ages so that no folds or tears are introduced to the images and no information
is lost from the image being mapped.

We formulate the GIS as a minimization problem as follows. Minimize

l(qi(t), v(t, x)) =
1
2

∫ 1

0

∫
B

‖Lv(t, x)‖2
IRddx dt , (1)

over deformation fields, v(t, x) ∈ IRd and paths, qi(t) ∈ B for i = 1, . . . , nc,
where B ⊂ IRd is the unit-ball domain of the image and L = ∇2 approximating
the Willmore energy. We have constraints for 0 ≤ t ≤ 1, i = 1, . . . , nc,

dqi

dt
= v(t, qi(t)), qi(0) = P i, qi(1) = Qi . (2)
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Using techniques in [5], we can represent the minimizing vector field as

v(t, x) =
nc∑
i=1

αi(t)G(qi(t), x) , (3)

where αi(t), qi(t) are respectively multipliers and knotpoint positions at time t
for a set of nc knotpoints and where G(x, y) is the Green’s function derived by
Boggio [6]. We experiment numerically with the 2-dimensional Green’s function
G(x, y) = −|x − y|2 ln |x − y|2 for the biharmonic operator with zero Dirichlet
and Neumann boundary conditions on B. In this way, we can derive

min
∫ 1

0

1
2

nc∑
i,j=1

α

i αjG(qi, qj)dt, such that

dqi

dt
=

nc∑
j=1

αjG(qi, qj) , (4)

qi(0) = P i, qi(1) = Qi, i = 1, . . . , nc . (5)

We explore two methods for the minimization. In Sec. 2, we examine the struc-
ture of the discretized version of (4), and use an optimization method exploiting
this structure. In Sec. 3, we reformulate the problem in a Hamiltonian frame-
work to compute the GIS. In Sec. 4, we test the methods on brain images with
knotpoints marked by clinicians. In Sec. 5, we summarize our results.

2 Numerical Optimization Exploiting Partial Separability

To find the minimizer of (4), we discretize in time to achieve a finite dimen-
sional system. This yields a constrained optimization problem with a clear struc-
ture. The numerical optimization routine, Lancelot B, from the Galahad suite
[7], uses group partial separable structure to express the dependence between
different variables and make the structure of the resulting Hessian matrices
clear, improving the performance on large scale problems. The discretization
of the GIS is partially separable, because of the dependence on time. We move
to a discretized version of the problem using time step Δt = 1/N . We use
αn

i ≈ αi(nΔt), n = 0, . . . , N − 1 and qn
i ≈ qi(nΔt), n = 0, . . . , N to give the

problem in the following form: Minimize

l{αn
i , qn

i } =
1
2

nc∑
i,j=1

N−1∑
n=0

αn

i αn

j G(qn
i , qn

j ) (6)

over αn
i , qn

i i = 1, . . . , nc such that

N(qn+1
i − qn

i ) =
nc∑

j=1

αn
j G(qn

i , qn
j ), n = 0, . . . , N − 1, i = 1, . . . , nc (7)

with conditions q0
i = Pi, and qN

i = Qi, i = 1, . . . , nc. As detailed in [7],
Lancelot B uses an iterative method. Outer iterations minimize augmented La-
grangian merit functions, and inner iterations minimize a quadratic model of
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the merit function. Lancelot B minimizes a function where the objective func-
tion and constraints can be described in terms of a set of group functions and
element functions, where each element function involves only a small subset of
the minimization variables. Specifically, Lancelot B solves problems with objec-
tive functions of the form

f(x) =
∑
i∈Γ0

wg
i gi

⎛⎝∑
j∈Ei

we
ijej(xe

j)

⎞⎠ , x = (x1, x2, . . . , xn)
 . (8)

In the above, we have Γ0, a set of indices of group functions gi and we have Ei, a
set of nonlinear element functions ej and group and element weight parameters,
respectively wg

i and we
ij . For the Lancelot implementation, the constraints must

be of the form

ci(x) = wg
i gi

⎛⎝∑
j∈Ei

we
ijej(xe

j) + aN
i x

⎞⎠ = 0 , (9)

for i in the set of indices of constraints Γc. Examining our objective function (6),
we see that there is a natural division into N groups, each group being given by,
for the nth group

wg
i gi

⎛⎝∑
j∈En

we
njej(xe

j)

⎞⎠ =
1
2

nc∑
i,j=1

(αn
i G(qn

i , qn
j ))αn

j . (10)

In this notation, xe
j is the vector containing the optimization variables (qn

i , αn
i ),

for i = 1, . . . , nc. Similarly, the 2ncN velocity constraints in (7) can be char-
acterized by 2ncN groups. We require that the start and end points of each
control point path coincide with the landmarks on, respectively, the floating and
reference images. This gives 4nc constraints of the form

0 = (q1
i − P i)w, 0 = (qN+1

i − Qi)w, i = 1, . . . , nc . (11)

Hence we have 4nc groups characterizing the landmark constraints, each group
being weighted by some w � 1. In total, we have N + 2ncN + 4nc groups
characterizing the problem.

We see the block diagonal sparsity structure of the Hessian for the augmented
Lagrangian function for our problem in Fig. 1 where the Hessian for a problem
involving 5 time steps and 8 knotpoints is shown, calculated using a numerical
scheme on the augmented Lagrangian function as used in Lancelot B,

LA(x, λ; μ) = f(x) −
∑
i∈Γc

λici(x) +
1
2μ

∑
i∈Γc

c2
i (x) , (12)

where μ is the penalty parameter and λi for i ∈ Γc are Lagrangian multipliers.
There are 5 time blocks on the main diagonal, each with coupling to the ad-
jacent time blocks. There is a banded off-diagonal structure, the two bands of
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Fig. 1. The sparsity structure of the Hessian

A being due to the constraints being divided into x-dimension and y-dimension
constraints. Lancelot B uses Newton methods, which require Hessian approxi-
mations. The routine exploits group partial separability of the problem to make
calculation and storage of the Hessian approximations more efficient.

3 Classical Mechanics Approach

We present a novel formulation of the GIS for image registration as a prob-
lem in Hamiltonian dynamics. The GIS problem is given by the minimization
problem (4). We can treat this as a Lagrangian by setting

L(q, q̇) =
1
2

nc∑
i,j=1

α

i αjG(qi, qj) , (13)

where q = (q1, . . . , qnc), and q̇ = (dq1
dt , . . . ,

dqnc

dt ) represent position and velocity,
respectively. Following Arnold [8], we see that the Hamiltonian of the system,
H(p, q) = p
q̇ − L(q, q̇), is the Legendre transform of the Lagrangian function
as a function of the velocity, q̇, where p is the generalized momentum, ∂L

∂q̇ ,
and so

∂H

∂p
= q̇,

∂H

∂q
= −∂L

∂q
. (14)

Construct a matrix A ∈ IRnc×nc so that Aij = G(qi, qj), i, j = 1, . . . , nc, and
a matrix G ∈ IRdnc×dnc as G = A ⊗ I, (where I is the d-dimensional iden-
tity matrix). We can use (4) and define a vector α = [α


1 , α

2 , . . . ,α


nc
]
 to

derive dq
dt = Gα, and hence we see that the generalized momentum is given

by ∂L
∂q̇ = G−1Gα = α. Substituting this expression into the standard Euler-

Lagrange equations [8] gives ∂L/∂q = dα/dt. Hence, with (14), we have the
coupled system of Hamiltonian equations
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q̇ =
∂H

∂α
, α̇ = −∂H

∂q
,

[
q(0)
α(0)

]
=
[
P
A

]
= Y , (15)

where P is the vector of initial knotpoint positions in (4) and A is the initial
vector of generalized momentum. Substituting (13) and the derivatives from (15)
into the expression for the Hamiltonian of the system gives

H(α, q) = α
q̇ − L(q, q̇) =
1
2

nc∑
i,j=1

α

i αjG(qi, qj) , (16)

so that H is now a function of α and q. We have shown that the solutions, qi(t)
and αi(t) of (4) are solutions of (15). We solve the nonlinear system of equations
Φ(A; P ) = Q for A as a shooting problem, where Φ(A; P ) := q(1), the position
component of the solution of the Hamiltonian system

d
dt

qi =
nc∑

j=1

αjG(qi, qj),
d
dt

αi = −
nc∑

j=1

α

i αj

∂

∂qj
G(qi, qj), i = 1, . . . , nc ,

(17)
with initial conditions given in (15).

Numerical Implementation. To solve (17), we discretize in time. We choose to
discretize using the Forward Euler method. Experiments with symplectic meth-
ods have shown no advantage for this problem, principally because it is a bound-
ary value problem where long time simulations are not of interest, and no suitable
explicit symplectic integrators are available. Using the notation qn

i ≈ qi(nΔt),
αn

i ≈ αi(nΔt), n = 0, . . . , N, Δt = 1/N , we have[
qn+1

αn+1

]
=
[

qn

αn

]
+ Δt

⎡⎣ H(qn, αn)
∂α

−H(qn, αn)
∂q

⎤⎦ ,

[
P
A

]
=
[

q0

α0

]
= Y . (18)

We wish to examine the variation with respect to the initial momentum, A
in order to provide Jacobians for the nonlinear solver. The initial positions, P
remain fixed. Using the Forward Euler scheme for some function f , we have
Xn+1 = Xn + Δtf(Xn) with initial condition X0 = Y . Differentiating with
respect to A gives

dXn+1

dA
=

dXn

dA
+ Δt

df(Xn)
dXn

dXn

dA
,

dX0

dA
= [0, I]
 , (19)

where I is the 2nc × 2nc identity matrix. Let Jn be dXn

dA and solve numerically
a coupled system of equations

Jn+1 = Jn + Δt
df (Xn)

dXn
Jn, Xn+1 = Xn + Δtf(Xn) (20)

with initial conditions J0 = [0, I]
, X0 = Y . In our problem, we have

f(X) =

⎡⎣ ∂H
∂q

−∂H
∂α

⎤⎦ , X =
[

q
α

]
,

df(Xn)
dXn =

⎡⎢⎣ ∂2H
∂q∂α

∂2H
∂α2

−∂2H
∂q2 − ∂2H

∂α∂q

⎤⎥⎦ . (21)
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The entries of the Jacobian in (21) can be calculated explicitly. The analytic
calculation of the Jacobian permits efficient solution of the nonlinear equation
Φ(A; P ) = Q using the NAG nonlinear solver nag_nlin_sys_sol [9].

4 Comparison of Techniques

Numerical Optimization Approach. The inner iterations of the optimization
method of Lancelot B use a minimization of a quadratic model function for
which an approximate minimum is found. This leads to a model reduction by
solving one or more quadratic minimization problems, requiring a solution of a
sequence of linear systems. The Lancelot optimization package allows a choice
of linear solver from 12 available options as described in [7]. The tests use 10
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Fig. 2. Test cases for testing the linear solvers showing P i as circles and Qi as points

time steps on four selected test cases, as illustrated in Fig. 2, two comprising
knotpoints taken from adjacent points in a data-set of 123 knotpoints hand-
annotated on an MRI brain image, and two comprising points taken equally
spaced throughout the data-set. We see the results of the experiment in Table 1.
In general, the problems with the points closer together in the domain are hard-
est to solve. However, the method using the Munksgaard preconditioner, for in-
stance, performs better with 10 close points than with 10 points spread through
the domain. The expanding band preconditioner performs the best over the four
test cases, but still shows unexpected behaviour in the 20 point tests. It is clear
from these experiments that it is difficult to predict how an individual linear
solver will perform on a particular problem. None of the linear solvers resulted
in convergence for the case involving all of the 123 knotpoints.

In order to understand this behaviour better, we explore the change in con-
dition number of the interpolation matrix with respect to the minimum sepa-
ration between knotpoints. First, we examine the interpolation matrix for the
clamped-plate spline. Computing the clamped-plate spline requires solving a
linear system involving an interpolation matrix, G, constructed of biharmonic
Green’s functions in the same manner as that in which we constructed matrix A
in Sec. 3, namely Gij = G(qi, qj), where G(·, ·) denotes the d-dimensional bihar-
monic Green’s function and qi, qj are d-dimensional knotpoint position vectors.
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Table 1. Time taken to converge (in seconds)

Solver 10 Spread 10 Close 20 Spread 20 Close Total
Conjugate Gradient 5.78 4.86 54.04 71.07 135.74

Diagonal Band 24.38 46.40 366.98 785.47 1223.23
Expanding Band 0.89 1.69 10.00 6.35 18.93

Munksgaard 22.98 15.04 128.72 158.95 325.68
Lin-More 4.53 4.62 49.26 89.20 147.61

Multifrontal 1.42 2.09 76.07 21.00 100.58

This interpolation matrix is also a key feature of the Hessian of the augmented
Lagrangian, as discussed in Sec. 2. In Fig. 3, we see the change in condition
number for the interpolation matrix for two parallel knotpoint paths. From the
literature, [10], we expect the condition number in the 2-norm, κ2(G) of the
interpolation matrix to vary with the minimum separation of the knotpoints
in a manner bounded above by mini,j ‖qi − qj‖−β, β ∈ IR+. Accordingly, for
comparison, we calculate and plot α mini,j ‖qi − qj‖−β. We suspect the poor
performance of the linear solvers in the test cases is due to very large condition
numbers for small separations.
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Fig. 3. Condition numbers for knotpoints with decreasing separation

Classical Mechanics Approach. Experiments show that the Hamiltonian imple-
mentation can solve all of the test cases illustrated in Fig. 2 in less than one
second, whereas the Lancelot B implementation takes over 18 seconds to solve
the test cases. We see the effect of an increase in the number of time steps in
Fig. 4, comparing results using a numerical Jacobian with those using a true
Jacobian. We see that the performance of the method using the true Jacobian is
much superior to that using a numerical Jacobian, both in terms of function eval-
uations and of time. These tests used the first 60 knot points of the 123 point set.
In Fig. 4, we see the effect on performance of the Hamiltonian implementation
under an increase in the number of knotpoints, both with a numerical Jacobian
and with a user-supplied analytic Jacobian, as described above. The knotpoints
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Fig. 4. Varying the number of time steps (l) and knotpoints (r) for the Hamiltonian

are taken as consecutive excerpts from the same set of 123 points as for the test
sets above and 20 time steps are used. The speed of convergence of the method
improves by a factor of approximately 4 when there is a user-supplied Jacobian.
Notice that solving for the full 123 point set takes less than 40 seconds using
this method.

5 Conclusions

The Galahad implementation was developed by the authors as an improvement
to Marsland and Twining’s original MATLAB method [1] for calculating the
GIS and showed significant improvement over the MATLAB implementation.
The Hamiltonian method shows an impressive improvement over both of these
methods. We believe that the Galahad method shows disappointing performance
due to the lack of a preconditioner suitable for the ill-conditioning of the inter-
polation matrix. The Hamiltonian method for computing the GIS dramatically
outperforms the Lancelot B implementation over the test set of real data. It is
clear that exact Jacobians should be supplied to the Hamiltonian implementa-
tion to give efficient performance. We see from the experiments carried out that,
with exact Jacobians provided, the performance of the Hamiltonian method is
superior to the performance of previous methods.

References

1. Marsland, S., Twining, C.: Measuring geodesic distances on the space of bounded
diffeomorphisms. In: British Machine Vision Conference (BMVC). (2002)

2. Modersitzki, J.: Numerical methods for image registration. Oxford University
Press, New York (2004)

3. Camion, V., Younes, L.: Geodesic interpolating splines. In: EMMCVPR02. (2002)
513 ff.

4. Marsland, S., Twining, C.J.: Constructing diffeomorphic representations for the
groupwise analysis of nonrigid registrations of medical images. IEEE Trans. Med.
Imaging 23 (2004) 1006–1020



Computing the Geodesic Interpolating Spline 177

5. Cheney, W., Light, W.: A course in approximation theory. Brooks/Cole (1999)
6. Boggio, T.: Sulle funzioni di green d’ordine m. Circolo Matematico di Palermo 20

(1905) 97–135
7. Gould, N.I.M., Orban, D., Toint, P.L.: Galahad, a library of thread-safe fortran

90 packages for large-scale nonlinear optimization. ACM Trans. Math. Softw. 29
(2003) 353–372

8. Arnold, V.I.: Mathematical methods of classical mechanics. 2 edn. Volume 60 of
Graduate Texts in Mathematics. Springer Verlag, New York (1989) 508 pages.

9. Numerical Algorithms Group http://www.nag.co.uk/numeric/FN/manual/: NAG
Manual. (2004)

10. Schaback, R.: Error estimates and condition numbers for radial basis function
interpolation. Advances in Computational Mathematics 3 (1995) 251–264



Combining Registration and Abnormality
Detection in Mammography

Mohamed Hachama, Agnès Desolneux, and Frédéric Richard

MAP5, University Paris 5,
45, rue des Saints Pères,

75006 Paris, France
{hachama, desolneux, richard}@math-info.univ-paris5.fr

Abstract. Usually, image registration and abnormality detection (e.g.
lesions) in mammography are solved separately, although the solutions
of these problems are strongly dependent. In this paper, we introduce
a Bayesian approach to simultaneously register images and detect ab-
normalities. The key idea is to assume that pixels can be divided into
two classes: normal tissue and abnormalities. We define the registration
constraints as a mixture of two distributions which describe statistically
image gray-level variations for both pixel classes. These mixture distri-
butions are weighted by a map giving probabilities of abnormalities to
be present at each pixel position. Using the Maximum A Posteriori, we
estimate the deformation and the abnormality map at the same time. We
show some experiments which illustrate the performance of this method
in comparison to some previous techniques.

1 Introduction

Mammograms are often interpreted by comparing left and right breasts or suc-
cessive mammograms of a same patient. Such comparisons help radiologists to
locate suspicious differences which indicate the presence of some abnormalities
[1]. Several Computer-Aided Diagnosis (CAD) systems have also used image
comparisons for detecting abnormalities [2,3,4].

In these systems, a difference image is used to compare two images. This
difference image is obtained by simple subtraction [2], weighted subtraction [3]
or nonlinear subtraction [4]. Then it is thresholded to extract suspicious regions.
However, the image comparison is not straightforward due to additional image
dissimilarities which are related to sensor noise, different radiation exposure,
and variation of breast positioning and compression and which cause high false-
negative rates in abnormality detection schemes. Image registration is commonly
carried out to compensate for these normal differences. Hence, the success of the
detection task based on image difference depends on the preliminary registration
process.

On the other hand, the registration problem is usually expressed as a mini-
mization of an energy composed of a regularization term and a similarity term.
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The definition of the similarity criterion relies on the nature of image gray-level
dependencies [5]. For instance, the Sum of Square Differences (SSD) is often
used whenever gray-level values are approximately the same in the two images
to be registered. However, the presence of pathologies in mammograms such
as lesions invalidates gray-level dependency assumptions. Hence, abnormalities
may distort registration constraints and cause registration errors. Incorporating
some knowledge about abnormalities can improve the registration.

In [6], F. Richard proposed a registration technique which down-weights the
influence of abnormalities in the computation of registration constraints. The
similarity criterion used is related to M-estimation criteria, also applied for op-
tical flow computation [7]. But, the M-estimation approaches characterize ab-
normalities as pixels generating large image differences, which is not always the
case. A more general approach consists of using mixture-based models, in which
abnormalities are represented by a probability distribution, as it was done for
the optical flow estimation by Jepson and Black [8], and for image registration
by Hasler et al. [9], and by Hachama et al. [10].

In this paper, we present a mixture-based technique related to these previous
works. The main feature of our model is the definition of a probability lesion
map, which weights the mixture distributions at each pixel position by a prob-
ability to belong to a lesion. In this manner, we can interleave the registration
and abnormality detection and thus take proper advantage of the dependence
between the two processes.

The mixture-based technique and its mathematical formulation are presented
in Section 2. In Section 3, we illustrate the method behavior on some examples
and compare it with some classical techniques.

2 The Mixture-Based Technique

Let I and J be two images of the same size (M, N), having gray-level values
in the set {0, ..., 255} and defined on a discrete grid Ωd = {( i

M−1 , j
N−1), (i, j) ∈

{0, ..., M − 1} × {0, ..., N − 1}} associated to Ω = [0, 1]2. Image coordinates are
matched using applications φ which map Ωd into itself. Usually, registering the
source image I and the target image J consists of finding an application φ which
is such that the deformed image Iφ = I ◦ φ is “similar” to the target image J .

We assume that lesions may be present in the images. Let L be the lesion
map which associates to each pixel of Ωd its probability to belong to a lesion.
In the following, we formulate a bayesian model which allows us to estimate
simultaneously the deformation φ and the lesion map L. Thus, we can solve the
problems of image registration and abnormality detection at the same time.

2.1 Bayesian Formulation

Our formulation follows the Bayesian framework for image analysis laid out in
[11]. Assuming that images, transformations and lesion maps are realizations of
some random fields, Bayes rule can be expressed as
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p(φ, L|I, J) =
p(I, J |φ, L) p(φ, L)

p(I, J)
.

The Bayes rule allows us to write the posterior distribution p(φ, L|I, J) which
contains the information about the unknowns φ and L, in terms of the prior
p(φ, L) and the likelihood p(I, J |φ, L). The prior contains information about the
most likely deformations and possible forms of lesions, namely, their morphology
and spatial configuration. The relation between registered images is encapsulated
in the likelihood term. The probability p(I, J) is constant because it only depends
on the observed fields I and J .

As a simplification, we assume that the deformation φ and the lesion map L
are independent. In fact, lesions could generate specific local deformations that
we choose to neglect. Thus, the Bayes rule can be written as

p(φ, L|I, J) α p(I, J |φ, L) p(φ) p(L).

We can estimate the pair (φ, L) as the solution of the Maximum A Posteriori:

(φ̃, L̃) = arg max(φ,L) p(I, J |φ, L) p(φ) p(L) . (1)

To ensure that the transformations remain smooth, we assume that they arise
from the Gibbs distribution:

p(φ) =
1
Z1

e−Hd(φ) , (2)

where Z1 is a normalization constant, and Hd is a discrete elasticity potential
[12] (a continous version is given by Equation (9)). We also assume that the
lesion map arises from a Gibbs distribution:

p(L) =
1
Z2

e−Rd(L) , (3)

where Z2 is a normalization constant, and Rd is a discrete energy of regulariza-
tion. We use in this paper an energy restricting the amount of abnormal pixels
in the images via a real parameter αL :

Rd(L) = αL

∑
x∈Ωd

L(x) .

More specific terms can be defined to describe the spatial configurations of each
type of lesion. We will investigate the use of such energies in the future.

In order to define the likelihood p(I, J |φ, L), we assume that, given the trans-
formation φ, the probability of the pair of images (I, J) depends only on the
registered images (Iφ, J) and that pixels are independent. Hence, we can write

p(I, J |φ, L) =
∏
x

p(Iφ(x), J(x)|L(x)). (4)
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The probability of the pair (Iφ(x), J(x)) depends on the class of the pixel
x. Each class is characterized by a probability distribution, denoted by pN
for the normal tissue and pL for the lesion. Thus, the probability distribution
p(Iφ(x), J(x)|L(x)) can be defined as a mixture of the two class distributions:

p(Iφ(x), J(x)|L(x)) = (1 − L(x))pN(Iφ(x), J(x)) + L(x)pL(Iφ(x), J(x)). (5)

The value of the lesion map L at location x is used to weight both class dis-
tributions. In what follows, we present the distributions pN and pL we used in
experiments.

The Normal Tissue Class. Normally, gray-level values of registered images
should be exactly the same at corresponding positions. But, in practice, these
gray-level values usually differ because of noise or different image acquisition
parameters. Assuming that these variations have a discrete Gaussian distribution
with mean 0 and variance σ2 (σ = 15 in the experiments), we can define pN as

pN(Iφ(x), J(x)) =
1

C1
exp(−| Iφ(x) − J(x) |

2σ2

2

), (6)

where C1 is the normalization constant.

The Lesion Class. The definition of the lesion distribution is a difficult task.
Each type of lesion requires the definition of a specific distribution. For the
sake of simplicity, we assume that a lesion is present in the target image J . We
characterize the lesion just as an area which is brighter in the target image than
it is in the source image, defining the following distribution:

pL(Iφ(x), J(x)) =
{

0, if Iφ(x) > J(x)
1

C2
, otherwise, (7)

where C2 is the normalization constant.

2.2 Numerical Resolution

Up to now, we have formulated a Bayesian registration model in a discrete
setting. We now transform the discrete model into a continuous model so as
to be able to use variational resolution techniques. First, we rewrite the MAP
estimate (Equation (1)) as the minimization of the negative-log function

Ed(φ, L) = − log(p(φ)) − log(p(L)) − log(p(I, J |φ, L)).

Then, using Equation (4) and Gibbs distributions (2) and (3), we get

Ed(φ, L) = Hd(φ) + Rd(L) −
∑

x∈Ωd

log(p(Iφ(x), J(x)|L(x))) + K,
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where K is a constant. Next, following approaches in [13,12], we define a continu-
ous expression of this energy, by interpolating all functions by the finite element
method and replacing sums on the pixel grid Ωd by integrals on Ω:

E(φ, L) = H(φ) + R(L) −
∫

Ω

log(p(Iφ(x), J(x))) dx, (8)

where the probability distribution p(Iφ(x), J(x)) is the obtained continuous ver-
sion of the mixture distribution given by Equation (5). H(φ) is the elasticity
potential defined as∑

i,j=1,2

∫
Ω

[λ
∂ui(x)

∂xi

∂uj(x)
∂xj

+ μ(
∂ui(x)
∂xj

+
∂uj(x)

∂xi
)2]dx, (9)

where u = φ− id, and λ and μ are the Lame elasticity constants. The term R(L)
is the following energy:

R(L) = αL

∫
Ω

L(x) dx .

As in [14,6], we use a gradient descent algorithm on the energy E and finite
elements to approximate solutions of the minimization problem. We use a vari-
able change L = 1

1+e−M so as to satisfy the constraints 0 ≤ L(x) ≤ 1 and to be
able to differentiate the energy with respect to the second variable M .

3 Results

In this section, we illustrate the characteristics of the mixture model by com-
paring its performance to those of the SSD technique [12], and the M-estimator
based technique proposed in [6]. We applied algorithms to a pair of bilateral
mammograms (case 21 of the MIAS database [15]), for which the target image
contains a lesion (bright circular region at the bottom of Image (1-b)).

Registration results. Registrations obtained with the SSD and M-estimation
techniques tend to incorrectly match the lesion and the bright tissue in the
source image and thus reduce image differences due to the lesion (Images (1-d)
and (1-e)). This is corrected by the mixture-based technique which registers the
images correctly while preserving differences due to the lesion (Image (1-f)).

Detection results. We compare lesion binary images obtained with the three
techniques. For the SSD and the M-estimation techniques, lesion binary images
are obtained by thresholding the image difference generated by the adaptively
weighted subtraction [3]. The fact that abnormal pixels tend to have relatively
higher gray-level values is used to weight the difference between a pair of pixels by
gray-level value of the pixel of the image J . For the mixture-based method, we set
αL = 0.1 and threshold the lesion map. The thresholds are chosen so as to have
the same amount of abnormal pixels in the three lesion binary images obtained.
Figure 2 shows the lesion binary images obtained with the three techniques for
different amounts of abnormal pixels.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Registration of bilateral mammograms. (a) Source image I, (b) Target image J,
(c) The difference between the images before registration. The difference between the
images after the registration using (d) the SSD method, (e) the M-estimation method,
(f) the mixture-based method.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. The detection results. (a) The target image containing the lesion. For 10550
abnormal pixels, the results obtained with the (b) SSD method, (c) M-estimation
based method, (d) The mixture-based method. (e) The expert segmented lesion. For
4180 pixels, the results obtained with the (f) SSD method, (g) M-estimation based
method, (h) The mixture based method.
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For evaluating and comparing the three algorithms without the influence of a
threshold value, we have represented on Figure 3 the FROC curves obtained with
the three methods. The FROC curve plots the sensitivity (fraction of detected
true positives calculated by using the expert segmented image) as a function of
the number of false positives. For the mixture-based technique, we have obtained
similar FROC curves for different values of the weight αL. We have represented
the FROC curve obtained when αL = 0.1.
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Fig. 3. FROC Curves for the three detection methods

As observed on Figure (3), the FROC curve associated to the mixture-based
method is the highest. So, the detection by the mixture-based technique is more
sensitive. For instance, for 10000 false positive pixels (2% of image pixels), the
detection rate grows from 0.632 for the SSD and 0.627 for the M-estimation
based method, to 0.947 for the mixture based method.

4 Conclusion

We have presented a method for joint mammogram registration and abnormal-
ity detection. Thanks to this combined approach, the mixture-based method
improves the mammogram registration and increase the sensitivity of lesion de-
tection. In the future, we will focus on how to design a lesion model for different
types of lesions, and on the estimation of the distribution parameters for both
lesion and normal tissue classes. Furthermore, we plan to apply the mixture
method to a full mammogram database.
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Abstract. One of the main factors that affect the accuracy of intensity-based 
registration of two-dimensional (2D) X-ray fluoroscopy to three-dimensional 
(3D) CT data is the similarity measure, which is a criterion function that is used 
in the registration procedure for measuring the quality of image match. This pa-
per presents a unifying framework for rationally deriving point similarity meas-
ures based on Markov random field (MRF) modeling of difference images 
which are obtained by comparing the reference fluoroscopic images with their 
associated digitally reconstructed radiographs (DRR’s). The optimal solution is 
defined as the maximum a posterior (MAP) estimate of the MRF. Three novel 
point similarity measures derived from this framework are presented. They are 
evaluated using a phantom and a human cadaveric specimen. Combining any 
one of the newly proposed similarity measures with a previously introduced 
spline-based registration scheme, we develop a fast and accurate registration al-
gorithm. We report their capture ranges, converging speeds, and registration  
accuracies. 

1   Introduction 

One of the main factors that affect the accuracy of intensity-based 2D-3D registration 
is the similarity measure, which is a criterion function that is used in the registration 
procedure for measuring the quality of image match. An extensive study of six simi-
larity measures applied specifically to 2D-3D registration has been performed by 
Penney et al. [1]. The similarity measures considered by the authors were: normalized 
cross-correlation [2], entropy of the difference image [3], pattern intensity [4], mutual 
information [5], gradient correlation [6], and gradient difference [1]. Using the fidu-
cial markers to get the “gold-standard” registration, the authors ranked these measures 
based on their accuracy and robustness. They found that pattern intensity was one of 
the two similarity measures that were able to register accurately and robustly, even 
when soft tissues and interventional instruments were present in the X-ray images. 
Unfortunately, pattern intensity was designed by using some heuristic rules [4]. 
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This work formulates a MRF model on the difference images obtained by compar-
ing the input fluoroscopic images with their associated DRR’s. The optimal solution 
is defined as the MAP estimated of the MRF. By using this unifying MAP-MRF 
framework, we can derive new point similarity measure in a rational way. The opti-
mization of each individual similarity measure derived from this framework leads to 
optimal registration. We point out that two previously published similarity measures, 
i.e., sum-of-squared-difference (SSD) [7] and pattern intensity [4], can be also derived 
from this framework. 

The remainder of this paper is organized as follows. Section 2 briefly introduces 
the 2D-3D registration scheme used in this paper. Section 3 describes the derivation 
of point similarity measures based on MRF modeling of the difference images. Sec-
tion 4 presents the experimental results, followed by conclusions in Section 5. 

2   Spline-Based 2D-3D Registration Scheme 

The 2D-3D registration scheme used in this paper is based on a recently introduced 
spline-based multi-resolution 2D-3D registration scheme [7, 8]. This scheme follows 
the computation framework of intensity-based methods. Given a set of X-ray images 
and a CT volume, it iteratively optimizes the six rigid-body parameters describing the 
orientation and the translation of the patient pose, by generating and comparing float-
ing DRR’s with the reference X-ray images using appropriate similarity measure. The 
differences between this method and other intensity-based methods lie in [7]: 1) a 
cubic-splines data model was used to compute the multi-resolution data pyramids for 
both CT volume and X-ray images, the DRR’s, as well as the gradient and the Hes-
sian of the cost function; 2) a Marquardt-Levenberg non-linear least-squares opti-
mizer was adapted to a multi-resolution context. The registration was performed from 
the coarsest resolution until the finest one. The accuracy of this method depends on 
the chosen similarity measure. Previously, accuracy of approximately 1.4 ±  0.2 mm 
when SSD was used [7] has been reported. 

3   Deriving Point Similarity Measures Based on MRF Modeling of 
     Different Images 

To find an optimal registration transformation we cast the problem into a Bayesian 
framework of MAP-MRF estimate. We thus follow the four steps of the MAP-MRF 
estimate [9]. 

1. Construction of a prior probability distribution )(Tp  for the registration trans-

formation T matching the reference X-ray images to the floating DRR’s. 
2. Formulation of an observation model )|( TDp  that describes the distribution 

of the observed difference images D by comparing the reference X-ray  
images and the floating DRR’s given any particular realization of the prior 
distribution. 
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3. Combination of the prior and the observation model into the posterior distribu-
tion by Bayes theorem 

)()|()|( TpTDpDTp ∝  (1) 

4. Drawing inference based on the posterior distribution. 

3.1   Prior Distribution 

One advantage of formulating 2D-3D registration according to Bayesian framework is 
that we are able to specify a prior distribution for each configuration of registration 
parameter space. In this paper, we don’t take advantage of this property. We treat all 
parameter configurations equally. Due to the Euler angle based parameterization of 
rotation in our approach, )(Tp  are a uniform distribution. But it is possible to use this 

property to favor certain transformations when different parameterization forms such 
as quaternion are used. 

3.2   Observation Model 

Given a realization of the prior distribution, the observation model p(D|T) describes 
the conditional distribution of the observed difference images D. By specifying an 
observation model we may favor a transformation that establishes matching between 
regions of similar properties. By modeling the difference image D as a MRF with 
respect to the rth order neighborhood system }{ ,

r
jiNN =  we can derive the energy 

function for the observation model as: 

]),(
)(

1
)1()([)|(

1

,

, ),(
,,

,

,

,
,

,
''

''

= ∈

−+=
Q

q

JI

ji Nji
jijir

ji

JI

ji
ji

r
ji

ddV
Ncard

dVTDE αα  (2) 

where Q  is the number of images and JI ×  is the size of each image. The first term 

is the potential function for single-pixel cliques and the second term is the potential 
function for all other cliques. ]:[ 10∈α  weights the influence of these two terms. 

)( ,
r
jiNcard  means to compute the number of pixels in neighborhood r

jiN , . 

The selection of the potential functions in Eq. (2) is a critical issue in MRF model-
ing [9]. As pointed out below, its selection decides the form of similarity measure. 

The computation of the difference images also plays an important role in the  
present framework. In [4], an adjustable scaling parameter was used to build the dif-
ference images. To eliminate this parameter, Joni  et al. [7] tries to normalize the 
intensity range of the input reference fluoroscopic images and that of the correspond-
ing DRR’s by removing their mean and then dividing by their standard deviation. In 
this paper, we use a similar method. But unlike in [7], where the mean and the stan-
dard deviation were computed from the complete region of interest (ROI), we com-
pute them only using those pixels in the neighborhood r

jiN , . 
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3.3   MAP Estimate 

The posterior conditional probability distribution is given by: 

))|(exp()|( TDEDTp −∝  (3) 

In search for the MAP estimate: 

)|(maxarg DTpT T=  (4) 

To illustrate how to derive similarity measures using the present framework, two 
examples of previously published similarity measures are given as follows. 

Sum-of-Squared-Difference (SSD): It can be derived from Eq. (2) by specifying 
1=α  and 2

jiji ddV ,, )( = . 

Pattern Intensity: the pattern intensity proposed in [4] is written in the form: 
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where r  and σ  are two parameters to be experimentally determined. r
jiN ,  is a 

neighborhood with radius r . It can be derived from the present framework by speci-
fying 0=α  and using following pairwise clique potential function: 
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where ',' ji
d  is a pixel in the neighborhood r

jiN , . 

3.4   Deriving New Point Similarity Measures 

More generally, by choosing different neighborhood system and by specifying differ-
ent clique potential functions that incorporates different a priori constraints, we can 
derive different new similarity measures. 

Isotropic rth order neighborhood system and pairwise potential function with 1st 
order smoothness constraint (INrS1): It is defined using following equation: 
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It is actually a combination of SSD and a modified form of pattern intensity [10]. 
Following the suggestion in [4], we also choose r=3 pixels. From now on, we call this 
similarity measure IN3S1. 
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Two anisotropic similarity measures can be derived using following equation: 

)()1( 2
),,(

,

,

2
),,(

,

,

2
, yji

JI

ji
xji

JI

ji
ji dddP +−+= ααα  (8) 
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∂=
∂
∂=  is the first derivatives of the dif-

ference image D along X and Y directions, respectively. 

Anisotropic 4-neighborhood system and potential functions with first order 
smoothness constraint (AN4S1): It computes the first derivative in Eq. (8) using  
4-neightborhood system with following convolution masks: 

• [ ]101−  for the determination of xjid ),,(  and 

• [ ]T101−  for the determination of yjid ),,(  

Anisotropic 8-neighborhood system and potential functions with first order 
smoothness constraint (AN8S1): It also computes the first derivative in Eq. (8) using 
4-neightborhood system but with following convolution masks: 

• 
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4   Experiments 

A phantom and a human cadaveric spine specimen together with their ground truths 
were used in our experiments. Both phantom and cadaveric specimen were scanned 
by a GE LightSpeed Ultra CT scanner (GE Healthcare, Chalfont St. Giles, United 
Kingdom) with same intra-slice solution (0.36 mm x 0.36 mm) but with different 
inter-slice thickness, 1.25 mm for the phantom and 2.5 mm for the cadaveric speci-
men, which resulted in volume dataset of size 512x512x93 volxels for phantom and 
512x512x72 for the cadaveric specimen, respectively. The 2D projection images of 
both phantom and cadaveric specimen were acquired from a Siemens ISO-C C-arm 
(Siemens AG, Erlangen, Germany). They are calibrated and undistorted with custom-
made software with high accuracy. The phantom was custom-made to simulate a good 
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Fig. 1. Behavior of different similarity measures. Cut through the minimum of different similar-
ity measures on the phantom data (the 1st and 2nd rows) as well as on the cadaveric spine speci-
men (the 3rd and 4th rows). The ordinate shows the value of different similarity measures (they 
are normalized to the range [0.0, 1.0]), which are given as functions of each rigid transforma-
tion parameter in the range of [-15o, 15o] or [-15 mm, 15 mm] away from the its ground truth 
((1) 1st column of the 1st and 3rd rows: X rotation; (2) 2nd column of the 1st and 3rd rows: Y 
rotation; (3) 3rd column of the 1st and 3rd rows: Z rotation; (4) 1st column of the 2nd and 4th rows: 
X translation; (5) 2nd column of the 2nd and 4th rows: Y translation; (6) 3rd column of the 2nd and 
4th rows: Z translation). Zero in each abscissa means the ground truth for that individual pa-
rameter, obtained by paired point matching based on fiducial markers. 

condition. In contrast, projections of interventional instruments were present in the X-
ray images of the cadaveric specimen to simulate a practical situation in image-guided 
therapy. 

The ground truths were obtained by implanting fiducial markers. Both phantom 
and cadaveric specimen were equipped with infrared light emitting diodes (LEDs) 
markers to establish a patient coordinate system (P-COS) and was tracked using an 
optoelectronic position sensor (OptoTrak 3020, Northern Digital Inc., Waterloo, Can-
ada). The actual locations of fiducial markers were digitized in P-COS using an opto-
electronically tracked pointer and were matched to the corresponding points in CT  
volume dataset. The ground truths were then obtained using singular value decompo-
sition with an accuracy of 0.52 mm for phantom and 0.65 mm for cadaver,  
respectively. 
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For all three newly derived similarity measures, the parameter α  was chosen as 
0.5. Each time, two nearly orthogonal C-arm images from the corresponding dataset 
were used for the experiments described below. 

The first experiment was designed to compare the behaviors of the newly derived 
similarity measures to those of the published similarity measures such as SSD and 
mutual information. Though mutual information was ranked as least accurate in [1], 
other group [11, 12] later found that it performed reasonably well. The results were 
given in Figure 1. It was found that all similarity measures had similar behavior when 
tested on the phantom data but different behavior when tested on the cadaveric data. 
Those similarity measures derived from the present MAP-MRF framework showed a 
superior behavior compared to other two well-known similarity measures. More spe-
cially, the curves for the newly derived similarity measures have clear minima and are 
smoother, which is an important property to take the advantage of our 2D-3D registra-
tion scheme, which uses a gradient-based optimization technique. It is also evident 
that the behavior of mutual information is better than that of SSD. 

 
 

Fig. 2. Experimental results of capture ranges (left) and converging steps (right) 

Combining any one of the similarity measures with the 2D-3D registration scheme 
described in Section 2, we developed a 2D-3D registration algorithm. The second 
experiment was designed to evaluate their capture ranges, converging steps, and regis-
tration accuracies of these registration algorithms. Based on the investigation results 
obtained in the first experiment, we only performed this experiment on the human 
cadaveric specimen dataset to compare the three newly derived similarity measures. 
For this purpose, we perturbed the ground truth transformation by randomly varying 
each registration parameter in the range of [-2o, 2o] or [-2mm, 2mm] to get 100 posi-
tions, and then another 100 positions in the range of [-4o, 4o] or [-4mm, 4mm], and so 
on until the final range of [-12o, 12o] or [-12mm, 12mm]. We then performed our 
registrations and counted how many times they converged for each range (when the 
target registration error (TRE) measured on those fiducial markers was less than  
1.5 mm). The capture range was defined when there was at least 95% successful 
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Table 1. Results of registration accuracies 

 

rate. The experimental results on capture ranges and converging steps are given in 
Figure 2. The results on registration accuracies are shown in Table 1. It was found 
that IN3S1 had larger capture range than other two similarity measures but it was also 
less accurate and required more steps to be converged. 

5   Conclusions 

In this paper, we introduced a unifying MAP-MRF framework to derive novel point 
similarity measures for 2D-3D registration of X-ray fluoroscopy to CT images. The 
derived novel point similarity measures had been evaluated using phantom and ca-
daver and the results showed that they provided satisfactory 2D-3D registration accu-
racy, even when interventional instruments were present. 
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Abstract. The purpose of this paper is to demonstrate the clinical advantages of 
using semiautomatic volume registration where automatic registration is 
problematic due to large deformations, small bone anatomy, or extraneous 
structures. Examples are drawn from clinical cases of MRI/PET breast studies, 
CT angiography/SPECT cardiac studies, and total wrist arthroplasty. These 
types of studies should be contrasted with those involving the head, thorax, and 
pelvis where there is much less deformation and the existence of (some) large 
bones facilitates automatic matching. 

1   Introduction 

Volumetric registration (fusion) of certain types of 3D data sets can be potentially 
clinically useful, but difficult to achieve with automatic fusion tools. Automated tools 
can be employed where each volume contains predictable information, such as with 
magnetic resonance imaging (MRI)/computed tomography (CT) head scans without 
skull or soft tissue deformation [1,2], and where expected anatomical structures and 
the body shape are similar, although the registration process can take a considerable 
amount of time [3-5] and is generally limited to an affine transformation. However, 
automated registration is more difficult in other situations. One example is the fusion 
of low resolution radionuclide functional scans that lack good anatomical features 
with higher resolution anatomical data, because the tools can’t always detect the data 
correlation. Another example is the fusion of CT and positron emission tomography 
(PET) scans [6], where these tools don’t know a priori what not to consider; moreover 
the voxels themselves do not provide this information. The registration method used 
in this study allows the user to employ a priori knowledge to explicitly indicate 
structural correlation, and to implicitly ignore other features, such as a prosthesis, 
which exist in the volumes. It also allows for 3D deformation. The user chooses co-
homologous points that are used to estimate a transformation between the two 
volumes, which brings these points into alignment. The purpose of this report is to 
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demonstrate the clinical advantages of using semiautomatic volume registration [7] in 
three cases where automatic registration is difficult; in (1) breast imaging and (2) 
heart imaging, because of large deformations and lack of bony landmarks, and (3) 
wrist imaging, because of the need to preserve the spatial relationship of multiple 
small structures. 

1. In many instances, MRI scans of the breast showing tissue differences have low 
specificity resulting in the need for further invasive procedures or a series of six 
month follow-up scans [8]. Because metabolism is generally increased in tumors, 18-
F fluoro-deoxy-glucose (18-F FDG) PET scans can provide useful information about 
the local metabolism of breast tissue. We fused volumetric data sets of the breast from 
MRI scans with 18-F FDG PET scans to assess whether the additional information 
from the PET study could improve the diagnostic outcome. These scans lack anatomic 
landmarks or other correlated data required for automatic fusion. 

2. Coronary artery disease (CAD) is a leading cause of morbidity and mortality. 
Non-invasive evaluation for CAD has traditionally been based on the assessment of 
myocardial perfusion (single photon emission computed tomography-SPECT/PET) 
and/or function (Echocardiography/MRI) during rest and stress conditions. Definitive 
diagnosis is based on invasive coronary angiography demonstrating obstructive 
lesions involving the coronary arteries. However, the hemodynamic significance of 
coronary artery stenosis is not always apparent on routine coronary angiography, and 
an assessment of the myocardial territory supplied by the coronary artery is often 
needed. With the advent of multi-detector computed tomography (MDCT) scanners 
coupled with ECG gating, non-invasive evaluation of the coronary arteries has 
become possible. Although MDCT coupled with the dynamics of contrast agent 
enhancement is a promising method for myocardial perfusion assessment, the 
combination of relatively high doses of radiation and the use of potentially harmful 
contrast agents limits its clinical applicability [9]. To combine the advantages of both 
anatomic coronary artery evaluation with myocardial perfusion assessment, volume 
data sets from resting computed tomography angiography (CTA) and rest/stress 
SPECT studies were fused and correlated for clinical applicability. The automatic 
fusion of the these data sets is hampered because the areas of high activity in the CTA 
scan (the coronary arteries) correspond to areas of low activity on the SPECT scan 
which enhances the myocardium. 

3. The most common long-term failure mode of total wrist arthroplasty (TWA) is 
loosening of the distal prosthetic component [10]. If detection of loosening and 
subsequent wear is delayed, the resulting bone destruction and soft tissue reactions 
can become more advanced. This can make revision procedures more extensive, 
painful for the patient, and costly. Standard planar radiographs are commonly used 
today to evaluate loosening of TWA. However, the accuracy of measurements on 
radiographs is low. It has previously been shown that position and migration of the 
acetabular component in total hip arthroplasty (THA) can be detected with the use of 
CT image registration [11]. Since the wrist joint is more complicated than the hip, 
there are new problems encountered when fusing TWA volumes, the most prominent 
of which is the small bone-to-prosthesis ratio (i.e., small bones, large metallic 
prosthesis). Again, auto-fusion techniques would be difficult here as the most 
prominent feature in the scans is the prosthesis. Unfortunately, it is precisely the 
possible prosthetic movement with respect to the bone which is to be detected. 
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2   Methods and Materials 

All of the studies described here were approved by the Institutional Review Board and 
informed consent was obtained when required. All studies were performed using 
routine clinical procedures and scanners and were transferred via network in DICOM 
3 (CT, MRI, PET) or in original format (SPECT) to a common computer system and 
converted to the standard AAPM format using Interformat [12]. 

All MRI breast scans were performed on one of five clinical scanners (Avanto, 
Symphony, TimTrio, Magnetom Vision Plus, and Sonata, Siemens Medical Solutions, 
Malvern, PA). All studies included an axial 3D T1-weighted gradient echo sequence 
performed before and three times after a rapid bolus injection of gadolinium contrast 
agent. These 3D volumes are reconstructed in the sagittal plane. An axially 
reconstructed 3D breath-hold fat-saturation sequence was available for 21 of the 23 
patients; for the other 2 patients locally developed software was used to remap the 
volumes into the axial plane (with reduced resolution in the x direction). The MRI 
volumes were reconstructed into various matrix sizes which ranged in x from 160 to 
512 pixels, in y from 320 to 512 pixels, and in z from 15 to 384 slices. The pixel sizes 
ranged in x from 0.625 - 1.6 mm, in y from 0.52 - 1.09 mm, and the slice thickness, z, 
ranged from 0.52 - 6.0 mm. 

CTA cardiac studies were acquired on one of two MDCT scanners (Sensation 16 
or Sensation 64, Siemens Medical Systems, Malvern, PA). Scanning was performed 
from the tracheal bifurcation to the diaphragm using a bolus tracking technique 
following the injection of 80-140 mL (80 for Sensation 64, and 140 for Sensation 16) 
of non-ionic contrast medium (Ultravist, Berlex, Montclaire, NJ). The gantry rotation 
time was 330 ms. Between 224 and 317 overlapping transaxial sections were 
reconstructed with a medium-sharp convolution kernel (B30f) into a 512x512x2 byte 
matrix with an x-y pixel size of 0.254-0.293 mm, a slice spacing of 0.5 mm, and an 
ECG-gated half-scan algorithm, with a resulting temporal resolution of 165 ms at the 
center of rotation. Volume reconstruction was retrospectively gated to the ECG. All 
CT orthopedic studies were acquired on the same scanner (GE Healthcare LightSpeed 
QX/i, Milwaukee, WI). Between 163 to 196 transaxial sections were reconstructed 
into 512x512x2 byte matrices with an x-y pixel size of 0.188-0.215 mm and a slice 
spacing of 0.7 mm. 

All PET/CT scans were acquired on the same scanner (CTI HiRes/Biograph6, 
Siemens Medical Systems, Knoxville, TN). Forty-five minutes following the 
intravenous administration of 370 to 740 MBq (10 to 20 mCi) a routine whole body 
F-18 FDG scan was performed supine, followed by an additional prone scan from the 
base of the neck to the diaphragm. Emission scans were acquired following the 
acquisition of a low dose contrast-enhanced CT scan used for attenuation correction. 
Between 70-157 prone breast slices were reconstructed into 168x168x2 byte matrices, 
with CT-based attenuation correction. Only the attenuation-corrected data sets were 
used. The slice spacing was 2.5-4.0 mm and the x-y pixel size was 4.06 mm. 

The SPECT scans were acquired on one of two scanners (ADAC Vertex or Cardio, 
Philips Medical Systems, Milpitas, CA). Using the clinical cardiac protocol, 61 
projection slices gated over 17 time intervals (1037 slices) were reprocessed into 64 
summed projection slices. These data sets were reconstructed into short- and long-
axis volumes and, for this project, reconstructed into transverse slice volumes 
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consisting of 64x64x2 byte matrices per slice, with 16 to 23 slices each. The cubic 
voxels were 6.47 mm on each side. The commercially supplied reconstruction 
algorithm, which included a Butterworth filter (order:10, cutoff: 0.5 - rest; order: 5, 
cutoff: 0.66 - stress), was used. 

2.1   Breast MRI/PET Studies 

Data volumes were prospectively gathered from 23 women (ages 24-65 years) with 
suspected primary or recurrent breast cancer. 18-F FDG PET and MRI scanning was 
performed within the same day to four months of each other. The MRI breast scans 
were performed prone as they employ a special breast coil which allows the breasts to 
hang pendant; we designed and built an apparatus for the PET scanner which allows 
us to acquire the 18-F FDG PET scans with the patient in a similar position. 

2.2   Cardiac CT/SPECT Studies 

Data volumes were retrospectively gathered from seven patients (two women; five 
men; age range 47-72 years) with known or suspected heart disease. The studies were 
performed within 12 days to 11 months of each other.  

2.3   Orthopedic Wrist Studies  

Two human cadaver arms with a cemented implant (Universal Total Wrist, KMI, San 
Diego, CA) were used. In one arm, five 1 mm tantalum balls were implanted in the 
distal metaphysis of the radius where the bone/prosthesis ratio was smallest, and six 
in the carpal bones surrounding the distal component of the prosthesis. Five CT scans 
of each arm were obtained, with the arms repositioned at increasing angles to 
resemble five different patient positions. These ten CT scans were combined into case 
pairs, resulting in thirty different registration experiments defined by the placement of 
the landmarks (10 carpal bone only, 10 markers only, 10 carpal bone plus markers). 
This method was also applied to CT scans of a patient with symptomatic loosening of 
a total wrist implant. CT-guided volume registration showed that the etiology of the 
patient’s pain was loosening of the prosthesis and a revision operation occurred. 

2.4   Volume Fusion 

A previously described [13-15] volume fusion tool co-developed with RAHD 
Oncology Products was used to register/merge each of these clinical studies. The 
registration algorithm incorporated in this tool requires the user to pick co-
homologous points, i.e., corresponding point pairs (landmarks), on concurrently 
viewed slices that display the same physiologic point or structure. The transformation 
can be performed either using a first or second order polynomial (warping) or as a 
rigid body transformation requiring that as few as four point pairs be provided. 
Evaluation of the volume fusion was done visually in 2D and 3D [14], numerically 
(based on the distance between the actual position of the transformed landmarks  
and their ideal position (the reference landmark positions)), and through clinical 
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follow-up. Additional numerical tests, such as cross correlation of the volumes before 
and after registration and the squared sum of voxel value differences have also been 
done [14,17]. 

2.5   Automatic Registration 

To test our results against automatic registrations, two programs based on mutual 
information (MI) or on normalized MI (NMI) were used. Program one offered an 
initial registration followed by a precise match based on MI [18], a surface match, a 
landmark match, and an option to adjust the match manually (3D Task card, Siemens 
Medical Solutions, Malvern, PA). Program two, developed by a research group and 
subsequently licensed commercially (Analyze 6.0, Mayo Clinic, Rochester, MI), 
provides three 3D methods: surface (which must be segmented for the brain), voxel 
intensity (NMI with extensive image/volume sub-sampling, and a novel gray scale 
binning) and non-rigid registration (iterative NMI). The National Library of Medicine 
(NLM) image tool kit (ITK) based in MI (which uses a gradient decent optimizer and 
[19]), is available in program two. 

3   Results 

In all cases, fusion using our program was accomplished within clinically acceptable 
ranges of registration quality, time from start to finish of the process, ease of use, and 
level of training necessary to operate the software. Multi-variant analysis performed 
on the transformed landmark distance differences showed no significant difference, 
confirming that the landmark choices between landmark sets and across studies 
(patients or cadaver arms) were consistent. A Student’s t-test performed on these data 
showed in all cases that the transformed volume was at least within three reference 
pixels. 

In the breast study, the MRI and PET scans were originally read separately. After 
fusion, a nuclear medicine physician and a radiologist re-read the studies, both side-
by-side and fused. In the majority of cases, it was judged that the fusion increased the 
confidence of the readers and their clinical assessments and hence could in the future 
potentially spare patients unnecessary biopsies or anxiety-producing clinical follow-
up. In this particular group of patients, pathology reports and more than six months of 
clinical follow-up were available. In this study, fusion showed that indeterminate 
enhanced lesions on MRI scans, when anatomically correlated with increased 18-F 
FDG uptake on PET, could be identified 98.6% of the time with cancer. Similarly, 
lack of such increased uptake could be identified 78.6% of the time as a benign 
process. Fig. 1 shows a cancer, (proven by biopsy); the original 18-F FDG PET scan 
(A), the MRI scan with enhancing lesion (B), and the matched PET superimposed 
upon the MRI scan (C). The fusion clearly demonstrates the location of the increased 
uptake. Also shown are the automatic matches obtained using both program one and 
two (voxel intensity only, neither of the other methods, surface, non-rigid gave a 
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A B C D E 

Fig. 1. Simultaneous display of axial (top) coronal (middle) and sagittal (bottom). (A) Uptake is 
visible on original 18-F FDG PET scan. (B) An enhancing lesion is seen on the original MRI 
scan. The PET and MRI are shown registered and superimposed using our method (C); using 
automatic method one (D); and using automatic method two (E). 

(A)                    (B)                   (C)  

Fig. 2. Simultaneous display of axial (top) 
coronal (middle) and sagittal (bottom). There is 
no uptake is visible on original 18-F FDG PET 
scan (A).An enhancing lesion is seen on the 
original MRI scan (B).  PET and MRI scans are 
shown registered and superimposed using our 
method (C). 

Fig. 3. The segmented coronary artery tree 
has been superimposed on the registered 
SPECT heart which is shown translucently 
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result, and ITK gave a result similar to the above). Note also that program two 
displays the sagittal slice in the opposite direction from the other methods. Fig. 2 
shows a biopsy-proven benign lesion (presented with the original unregistered scans 
and the two superimposed); note that this PET scan does not demonstrate significant 
uptake. 

For the cardiac study, the CTA and SPECT scans were registered and viewed both 
in 2D and 3D. The coronary artery tree was segmented from the CTA, and the 
registered SPECT scan was displayed in 3D superimposed on it. If there was 
significant coronary artery narrowing, this would have been seen as diminished 
myocardial perfusion in the corresponding supplied territory on the SPECT volume. 
A 3D rendering of the registered SPECT heart with the coronary artery tree 
superimposed is shown in Fig. 3. A 2D view of the sliced volumes is shown in Fig. 4 
presenting the original SPECT slices, the original CT slices, the SPECT volume 
transformed by our method and superimposed on the CT volume. The result of the 
match obtained using automatic program two is also shown (voxel intensity only - 
neither surface matching nor non-rigid registration worked; ITK gave very similar 
results to those shown). Unfortunately, we could not read the SPECT study into 
program one. Previously, we had a demonstration, using our cardiac data, of both 
program one and another (fusion 7D - Mirada) offered by the same company. The 
results were similar to those in Fig. 4D. 

 
A B C D 

Fig. 4. Simultaneous display of axial (top) coronal (middle) and sagittal (bottom). (A) is the 
original SPECT scan. (B) is the original CTA scan. The SPECT and CT are shown registered 
and superimposed using our method (C); and using automatic method two (D). 
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A B C D 

Fig. 5. Simultaneous display of axial (top) coronal (middle) and sagittal (bottom) from two 
different case matches (27 A and 1 B). The registration in A is based on both bone and tantalum 
markers. Arrows indicate the distal component of the prosthesis. The registration in B is based 
on bone alone. Both cases show well registered wrists using our method. The registration in C 
shows case 1 matched using automatic method one and the registration in D show the same 
case matched using automatic method two. 

For the orthopedic study, visual and numerical methods confirmed that the fusion 
method could co-locate the wrist anatomy within 1 mm. Therefore, a displacement of 
greater than 1 mm could be detected, while standard radiographic methods can only 
detect a displacement of greater than 4 mm [20]. Fig. 5 demonstrates the visual 
quality of the match for two cases and shows the match from the automatic programs 
for case 1. Here the results for the automatic matches were quite comparable to ours, 
possibly because both images were of the same modality (CT). All automatic 
registration methods worked, except the for the non-rigid one. 

4   Discussion 

The results of breast MRI/PET fusion indicate that combining the functional tumor 
information provided by 18-F FDG PET scans together with the localization 
information from MRI scans can provide a better tool for diagnosis of primary and 
recurrent breast cancer. This could potentially save women with negative findings 
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from having to undergo the trauma of invasive or repeated procedures, as well as 
provide a more definitive diagnosis for affected patients. It could be argued that the 
CT scan associated with the PET scan could be used for anatomical localization of 
any 18-F FDG uptake. However, CT does not show the same subtle tissue differences 
as can be seen on MRI. In order to spare the patient unnecessary radiation, MRI is 
usually the first method of choice in screening patients with a family history of breast 
cancer, or in young patients with dense breasts. PET/CT is only used when the MRI 
scan is equivocal, which unfortunately has been reported to be as much as 50% of the 
time [8]. 

The results of the cardiac study identify the precise location and hemodynamic 
significance of obstructive coronary artery disease. By combining the anatomic 
coronary artery information obtained from CT volumetric data with the functional 
myocardial perfusion information obtained from SPECT data, a more comprehen-
sive evaluation for coronary artery disease can be obtained. This information 
would be useful to clinicians by identifying patients with and without obstructive 
CAD. For patients without hemodynamically significant obstructive CAD, medical 
treatment of CAD can be initiated, and the patient could be spared the potential 
complications of invasive coronary angiography. In patients with evidence of 
significant obstructive CAD, the information obtained from the fused CT and 
SPECT volume sets can aid in procedural planning for either percutaneous or 
surgical revascularization. 

The results of the wrist study demonstrate that CT image registration using this 
tool has the potential to detect prosthetic loosening at an earlier stage than is 
obtainable with planar radiography. This method is not yet as accurate as the 
radiostereometric analysis (RSA) technique [21]; however, (1) it is more readily 
available, (2) does not require the prior implantation of markers, (3) does not require 
as complex an analysis, (4) not only allows numerical analysis, but also gives a visual 
correlate to implant migration, and (5) is potentially lower in cost (although a detailed 
cost analysis has yet to be conducted). 

These encouraging results are examples of what can be achieved when not 
constrained by the limitations of current automatic fusion tools. The landmark method 
initially may seem complex or time consuming, but the process is actually very 
straight forward and fast after a short learning curve. Once the user understands the 
process of picking landmarks for a modality and anatomical region, every new patient 
is done essentially the same way and the entire process generally takes ten to fifteen 
minutes. The learning curve is related to the image modality and anatomy, and 
involves learning to make some anatomical sense of each modality, developing a 
knowledge base of “dependable” anatomy in both modalities, and developing a 
procedure for using that information wisely. The main focus of the landmarks is in the 
region of critical interest, but by placing landmarks spread throughout the volume, a 
good registration can be obtained everywhere. The size of the data set is not as critical 
in determining time (as contrasted with some automatic tools [3,5]) as the modality 
and anatomical region. 
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Abstract. Because of its robustness and accuracy for a variety of
applications, either monomodal or multimodal, mutual information (MI)
is a very popular similarity measure for (medical) image registration. Cal-
culation of MI is based on the joint histogram of the two images to be
registered, expressing the statistical relationship between image inten-
sities at corresponding positions. However, the calculation of the joint
histogram is not straightforward. The discrete nature of digital images,
sampled as well in the intensity as in the spatial domain, impedes the
exact calculation of the joint histogram. Moreover, during registration
often an intensity will be sought at a non grid position of the floating
image.

This article compares the robustness and accuracy of two common
histogram estimators in the context of nonrigid multiresolution medical
image registration: a Parzen window intensity interpolator (IIP) and
generalised partial volume histogram estimation (GPV). Starting from
the BrainWeb data and realistic deformation fields obtained from patient
images, the experiments show that GPV is more robust, while IIP is
more accurate. Using a combined approach, an average registration error
of 0.12 mm for intramodal and 0.30 mm for intermodal registration is
achieved.

1 Introduction

The goal of image registration is to find a transformation that maps positions of
a reference image IR onto the corresponding positions of a floating image IF and
is optimal in some sense. Different ways exist to judge the similarity between
the reference and (deformed) floating image. They can be broadly classified into
two categories: feature based and intensity based methods. In 1995, Collignon
et al. [1] and Viola et al. [2] independently introduced mutual information (MI)
as a similarity measure for intensity based medical image registration. Because
of its robustness and accuracy for a variety of applications, either monomodal
or multimodal, its popularity has been growing ever since [3, 4].
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Calculation of MI is based on the joint histogram of the two images to be
registered, expressing the statistical relationship between image intensities at
corresponding positions. However, the sought-after transformations will usually
map pixels, located at integer positions in the reference image, to non integer
locations in the floating image. This, together with the discrete nature of digital
images, impedes the exact calculation of the joint histogram. In most cases, the
intensities at the non integer locations are found by some kind of image inter-
polation in the floating image. Several reference articles have been published
comparing different interpolators, yet no consensus exists on the best method
[5, 6]. The joint histogram is usually constructed by grouping corresponding in-
tensities in discrete, distinct bins [7, 5]. Alternatively, Thevenaz et al. [8] used a
B-spline Parzen window approach to smooth the histogram bins.

As early as in 1997, Maes et al. [9] introduced partial volume distribution
interpolation, an alternative method for the construction of the joint histogram.
No interpolation is used to estimate the unknown intensities. Instead, each ref-
erence intensity is paired with the intensities of the voxels neighbouring the non
integer location in the floating image. For each joint intensity pair, the histogram
is updated with a partial hit, using a trilinear kernel to weight the contribution.
Recently, Chen et al. [10] extended this approach to generalised partial volume
estimation, using higher-order B-spline kernels for the weighting to reduce the
artifacts.

Within this article, the B-spline Parzen window approach using intensity
interpolation and the generalised partial volume estimation approach are com-
pared using a single dataset, deformation model and optimisation algorithm.
Both algorithms are implemented using an analytical expression for the deriva-
tives. Nonrigid registration involves a huge number of degrees of freedom. To
reach the optimum in an acceptable time-span, calculation of the derivative of
the similarity criterion with respect to the deformation parameters is required.
Although those derivatives can also be calculated numerically, as e.g. in [11],
analytically calculated derivatives are less sensitive to noise and therefore might
lead to a better registration.

This paper is organised as follows. In the methodology section, more details
about both histogram estimators, the B-spline deformation mesh and the opti-
misation and validation algorithm are given. Next, the experimental setup and
results are presented. We finish with a short discussion and some indications for
future work.

2 Implementation

2.1 Histogram Estimation

For the histogram estimation, B-spline intensity interpolation (IIP) [8] and
(B-spline) generalised partial volume estimation (GPV) [10] are compared. In
both cases, a quadratic B-spline kernel is used, either for the image interpolation
and Parzen window (IIP) or for the histogram distribution weights (GPV). The
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Table 1. Multiresolution settings. The image scale gradually increases while the mesh
refines. MCPs lists the number of mesh control points. The time and warping index �
are averaged over the nine patients.

Stage Scale Δxyz MCPs Time �
(voxels) (mm:ss) (mm)

0:00 32.2
1 1/4 256 81 0:43 11.9
2 1/4 128 192 0:31 6.8
3 1/4 64 540 0:42 5.7
4 1/4 32 2400 0:52 4.6
5 1/2 32 2400 4:05 3.7
6 1/2 16 13608 4:43 2.3
7 1/1 16 13608 40:17 1.1
8 1/1 8 86700 31:22 0

mathematical complexity of both algorithms is comparable, requiring 9 B-spline
evaluations for the histogram estimation and 27 more for the derivative.

2.2 B-Spline Deformation Mesh

The nonrigid deformation is modelled by a B-spline deformation mesh [11, 12].
A grid of mesh control points is positioned over the image. To model a more
global deformation, the grid spacing is large, yielding a coarse mesh with few
control points. A fine mesh has a small grid spacing and many control points,
allowing a more local deformation. This approach allows a gradual refinement
of the deformation mesh by decreasing the grid spacing.

2.3 Optimisation

A multiresolution optimisation approach is adopted, using 8 multiresolution
stages. The multiresolution approach not only increases processing speed, by
performing the initial calculations on a smaller image. Gradually decreasing the
grid spacing will first recover more global deformations and progressively ad-
vance to finer deformations, thus avoiding local optima and creating a more
realistic deformation field. In each stage, a limited memory quasi Newton op-
timiser [13] is used, especially designed for a large number of parameters. The
exact derivative is calculated for each iteration. An overview of the registration
settings per stage is given in Table 1.

2.4 Warping Index

The registration error is measured by the warping index � [8], which is the root
mean square of the local registration error in each voxel, expressed in millimetres.
The region of interest over which the warping index is calculated is limited to
all voxels inside the brain. Registrations with a final warping index above 1 mm
are considered as a failure.
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3 Experiments

3.1 Setup

Accurate validation of nonrigid registration requires a set of reference and float-
ing images pairs and, for each pair, the ground truth deformation. A registration
is performed on each image pair. Comparison of the such obtained deformation
fields with the ground truth yields an estimate of the accuracy of the registra-
tion algorithm. However, ground truth deformations for nonrigid registration
are hard or impossible to obtain for real clinical cases. Therefore, we deduced
realistic artificial deformation fields and corresponding images starting from the
BrainWeb [14, 15] database and real patient images.

The BrainWeb database consists of simulated T1, T2 and PD brain images of
181× 217× 181 mm with a 1 mm voxelsize in each dimension, calculated from a
single phantom. Therefore, the images are a priori in perfect alignment. To obtain
a set of 9 realistic deformation fields, the BrainWeb T1 image is registered to 9
patient T1 brain images with dimension 256×182×256 and various voxelsizes of
about 1×1.2×1mm3. The residual error or average distance of each registration
step with respect to the final result, is listed in the final column of Table 1 and
shown as a dotted line in Figure 1. The numbers shown are averaged over the 9
patients.

The obtained deformations are applied to the BrainWeb T1, T2 and PD
images to produce deformed T1′, T2′ and PD′ images for each patient. This
way, a set of deformed images with known deformation fields is obtained. Next,
the original BrainWeb T1, T2 and PD images were registered to the deformed
T1′, T2′ and PD′ BrainWeb images. Thus, for each patient data set, 9 nonrigid
patient-BrainWeb validation registrations are performed: 3 intramodal and 6
intermodal. In total for the 9 patients, 9×9 registration results are obtained, of
which 3×9 intramodal and 6×9 intermodal.

The registrations were performed on an AMD Opteron cluster; each registra-
tion running on a single processor.

3.2 Results

To distinguish between robustness (the ability to recover large deformations)
and accuracy (the distance between the registration optimum and the true opti-
mum), two sets of experiments were performed: starting from the initial position
(�0 = 32.2 mm), and starting from the position obtained after 3 iteration stages
(�0 = 5.7 mm). The experiments were performed using 32, 64, 128 and 256 bins.
An overview of the error and failures for different numbers of bins is show in
Table 2. 128 bins was found to be the best choice, slightly better than 64 bins
and clearly superior to as well 32 as 256 bins.

Figure 1(a) displays the results using either IIP or GPV. The upper curves
represent registrations starting at the initial position. The IIP approach leads
in 74 out of 81 cases to a failure, whereas the GPV suffers from only 8 failures.
Starting from the position obtained after 3 iteration stages (lower curves, 5.7 mm
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Table 2. Number of failures and average warping error for different number of bins, for
intensity interpolation (IIP) and generalis partial volume estimation (GPV), starting
at multiresolution stage 0 (IIP0, GPV0) or 3 (IIP3, GPV3). Each entry shows the
warping index � (in mm) and number of failures.

32 bins 64 bins 128 bins 256 bins

IIP0 0.383 / 58 0.299 / 66 0.368 / 74 / 81
GPV 0 0.341 / 22 0.318 / 8 0.317 / 8 0.324 / 7
IIP3 0.280 / 0 0.226 / 0 0.212 / 0 0.306 / 1
GPV 0 0.334 / 0 0.312 / 0 0.309 / 0 0.315 / 0
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Fig. 1. (a) Warping index � (in mm) per multiresolution stage for IIP and GPV.
� is always calculated compared to the final ground truth. The dotted line shows
the residual error present in the different stages for the reference registration. The
solid and dashed line show the error for intensity interpolation respectively generalised
partial volume interpolation. The upper pair shows the results starting from the initial
position, the lower pair starts from the third reference stage. (b) � per multiresolution
stage for mixed interpolation (GPV for stage 1-4, IIP for stage 5-8).

average initial registration error), both approaches are always successful. The
IIP approach now even outperforms the GPV approach with a final error of 0.21
mm compared to 0.31 mm. Closely comparing the lower GPV and IIP curve, it
can be seen that while in stage 4 GPV is still superior, from stage 5 on the error
decrease is larger for the IIP approach than for the GPV approach.

Therefore, we propose a mixed approach, using GPV for stage 1-4 and IIP
for stage 5-8. The results are shown in Figure 1(b). As expected, the initial
GPV stages brings the transformation sufficiently close to the optimum, with
only 8 registration leading to a failure. The final IIP stages now are able to
achieve a smaller registration error of 0.24 mm. Calculating the registration
error independently for intermodal and intramodal registrations, gives an error
(failure rate) of 0.30 mm (6/53) respectively 0.12 mm (2/27).
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4 Discussion

Proper validation of nonrigid registration, especially at subvoxel accuracy, re-
quires a pair of images for which the deformation is known exactly. In the ap-
proach we follow, this deformation is obtained by registering a base image to
a patient image. Because we use the BrainWeb dataset, consisting of a priori
registered T1, T2 and PD images, it enables the validation of multimodal regis-
tration.

In the validation approach we follow, the same deformation model is used to
generate the ground truth and to perform the validation. We made this choice
because we wanted to validate the quality of the similarity criterion and the
optimiser rather than the applicability of the transformation model and possible
regularisers. Validating the latter is much more cumbersome and application
dependent and not the topic of this article. E.g., a different regulariser might be
needed for inter-patient and intra-patient registration.

During registration, the algorithm evolves from an initial regime to a final
regime. With ongoing multiresolution stages, the goal of the algorithm shifts from
a coarse yet robust registration in the initial stages to an accurate registration
in the final stages.

It is clear from Figure 1 that the IIP approach is insufficiently robust to
cover the first registration stages. Figure 2 shows a typical trace of the mutual
information around the origin and around the optimum of the first and fourth
stage along the derivative. It shows that, in those stages, IIP is more sensitive
to local optima and noisy. On the other hand, the warping index and Figure 1
indicate that, at the final stages, IIP is more accurate than GPV.
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Fig. 2. Trace of the mutual information along the derivative (a, c) around the beginning
and (b, d) around the optimum of the (a, b) first or (c, d) third stage. The solid line
is for IIP, left Y-axis. The dashed line is for GPV, right Y-axis.
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(a) (b) (c) (d)

Fig. 3. (a,b) Initial (without deformation) and (c,d) final (at ground truth deformation)
logarithm of the joint histogram for (a,c) GPV and (b,d) IIP interpolation

Thus, GPV interpolation is more robust, whereas IIP interpolation is more
accurate. GPV will always spread the histogram update over the 3×3×3 neigh-
bouring voxel intensities in the floating image. IIP will estimate a single inten-
sity by image interpolation, and will spread the histogram update over the 3×3
neighbouring bins. The initial and final histogram for both IIP and GPV is show
in Figure 3. Initially, it is more likely that the GPV approach will contribute,
although partially, to a correct intensity pair. If this pair is updated repeatedly,
its influence will become relevant. On the other hand, the IIP approach will cre-
ate only a single joint intensity pair for every reference voxel, and thus is more
influenced by local inhomogeneities or noise, leading to more spurious optima.

In the final registration stages, the distance between the estimated and true
transformation is sub-voxel. Thus, the interpolated intensity of the IIP approach
will be close to the true intensity. However, the GPV approach will still relate the
reference intensity to a neighbourhood of 3×3×3 floating intensities. Therefore,
the corresponding mutual information curve will be smoother and the location
of the optimum less pronounced. The IIP approach, sufficiently close to the true
optimum, will no longer be influenced by spurious optima.

5 Conclusion

The performance of intensity interpolation (IIP) and generalised partial volume
distribution (GPV) for multiresolution nonrigid image registration were com-
pared. Using the BrainWeb magnetic resonance data and realistic deformation
fields, we have shown that for voxel based nonrigid image registration GPV is
more robust, while IIP is more accurate. A combined approach using GPV for
coarse and IIP for fine registration yields better registration results than an
approach using only a single histogram estimator.
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Abstract. An elastic registration algorithm based on fuzzy set is proposed in the 
paper. The fuzziness of medical images is shown in two aspects: (1) the intensity 
of the pixels in medical images is fuzzy. The same kind of tissue may has 
different intensity and the same intensity may correspond to different tissues in 
one image; (2) the space position of image pixel is fuzzy. In the paper, we applied 
the fuzzy theory to the first aspect and presented the concept of fuzzy mutual 
information and its optimization method. For the second aspect, a multiresolution 
registration method based on fuzzy set and its optimization method is presented. 
16 groups of experiments have been done and the results showed that the elastic 
registration algorithm based on fuzzy set can improve the accuracy and 
robustness of registration algorithm greatly. 

1   Introduction 

Image registration is the process of overlaying two or more images of the same scene 
taken at different times, from different viewpoints, and/or by different sensors. Its task 
is to find a correspondence function mapping coordinates from a reference image to 
coordinates of homologous points in a test image. Image registration is a crucial step in 
many image analysis tasks in which the final information is gained from the 
combination of various data sources like in image fusion, change detection, and 
multichannel image restoration. Image registration is mainly applied to the areas of 
video compression and coding, motion analysis and objection tracking, etc. It leads to 
algorithm for segmentation, general 3-D reconstruction, registration with annotated 
atlases, motion detection and compensation [1][2]. 

The character of fuzziness exists in medical images, which is shown in two aspects: 
one is the fuzziness of the pixel intensity in medical images. For the existence of 
imaging error and noise, one kind of tissue may has different intensity and the same 
intensity may correspond to different tissues in the same image, so it is necessary to 
apply the conception of fuzziness to imaging process. The other aspect is the space 
fuzziness of the pixels in medical images, which is mainly caused by various errors. 
The other reason for the space fuzziness is the application of multiresolution algorithm, 
in which a pixel in one image may correspond to different pixels in another image of 
different resolution. The fuzzy theory is applied widely in the field of image 
processing, including image segmentation[3]-[6], enhancement[7] , registration[8] and 
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noise reduction[9]. The fuzzy theory and the conception of entropy are combined in [7], 
in which the maximum fuzzy entropy was applied to image segmentation. We 
combined the fuzzy theory [7][10] and mutual information (MI) together, and proposed 
the conception of fuzzy mutual information. We also constructed a multiresolution 
elastic registration algorithm based on fuzzy set, and compared it with a multiresolution 
elastic registration algorithm based on B-spline [11]. We applied fuzzy mutual 
information and multiresolution elastic registration algorithm to image registration and 
get a better result. The rest parts of the paper are arranged as the following: the tradition 
elastic registration algorithm based on mutual information is introduced in section 2; an 
elastic registration algorithm based on fuzzy set is introduced in section 3; the 
experimental results are shown in section 4; section 5 is the conclusion. 

2   Tradition Elastic Registration Algorithm Based on MI 

The input images are given as two m-dimensional discrete signals of the same size 
)(if y  and )(ifb , where 2ZIi ⊂∈ , I is the set of all pixel coordinates in the image. 

)(if y  and )(ifb  are called the reference and test images, respectively. We suppose that 

the test image is a geometrically deformed version of the reference image. g(x) is a 
deformation (correspondence) function to be identified. The elastic deformation model 
is a hierarchical algorithm that adopts B-spline to construct the deformation function 
and interpolate the image[12]. 

2.1   The Estimation of Probability Density Function Based on Parzen Window 

rt LL , are the intensity sets of the reference and test images, respectively. The joint 

discrete Parzen histogram is defined as 
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2.2   Optimization Method 

In [12], B-spline is adopted to construct the deformation function and interpolate the 
images. The deformation function is 
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We adopted the gradient descent method as the optimization method. 
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3   Elastic Registration Algorithm Based on Fuzzy Set 

3.1   Fuzzy Mutual Information Based on Intensity 

3.1.1   The Defination of Fuzzy Set  
For 1)( =−

∈Ii
m ixβ , we can choose B-spline as the membership function to 

implement the fuzzy division of the intensity space, so we select B-spline as the 
membership function of the fuzzy set.  

3.1.2   Fuzzy Probability Fuzzy Entropy and Fuzzy Mutual Information 
We define the sets A and B as the fuzzy division sets of the intensity spaces of the 

reference and test images, which consist of fuzzy subsets iA  and iB , respectively. The 

definition for the sets A and B is the same. For each fuzzy set iA  in A, the probability of 

the fuzzy sets iA  is [10]. 
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3.1.3   Other Definition of Fuzzy Entropy 
We define the fuzzy entropy of the fuzzy set iA  as 
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There are also many different definitions of the fuzzy entropy, the two main 
definitions are[7]: 
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In the three definition of the fuzzy entropy, our definition has two advantages: the 
first is the less computing time compared with the other two definitions, and there is 
only one operation of log in our definition; the second is the method defining the fuzzy 
entropy is the same with the tradition method defining the entropy, the only difference 
is the probability of the intensity is replaced by the probability of the fuzzy set iA .  

3.1.4   Optimization Method 
Similar to the tradition optimization method of MI, we adopted B-spline to construct 
the deformation function and interpolate the images, and adopted the gradient descent 
method as the optimization method. 

)(1 iCii CSCC ∇−=+ μ  
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The gradient of the fuzzy MI is 
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3.2   Multiresolution Registration Algorithm Based on Fuzzy Set 

Like section 3.1.1, we also select B-spline as the membership function to implement the 
fuzzy division of the coordinates spaces. After that, the fuzzy sets of pixels replace the 
pixels as the basic elements in the registration process. Various operations, such as the 
interpolation, constructing the similar criterion, or computing the gradient, are 
implemented on the basis of fuzzy sets. The operation details are similar to the ones 
based on the pixels, and the only difference is that the intensity of the pixels is replaced 
by the fuzzy intensity of the fuzzy sets. The fuzzy intensity of the fuzzy sets is 

∈

−=
iAx

mi xfixAf )()()( β  

where x is the coordinates value of pixels, i is the index of the fuzzy sets. If we select 
the function )2/()( ixxf w

m
Ii

−=
∈

β as the membership function, with the increase of 

W ( ZW ∈ ), the range of the membership function increase and the number of the fuzzy 
sets decrease simultaneously so we can complete the multiresolution registration 
algorithm based on the fuzzy sets. The optimization method is similar to the one of the 
tradition MI. 

4   Experiment 

This section presents a series of experiments in a controlled environment to assess the 
accuracy and robustness of our algorithm. We compare our test results with the ones of 
P. Th´evenaz ’s elastic algorithm in [12],which is called reference algorithm in this 
paper. We select mutual information(MI) I(X;Y)=(H(X)+H(Y))/H(XY) as the 
similarity criterion. The size of original images is 256×256 pixels. We warp the images 
with the same deformation, which include the displacements of 10 pixels along X and 
Y coordinates respectively, rotation of 10 degrees anticlockwise and local deformation 
warped by the function 5×sin(x/128). 
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4.1   Results of Experiments 

We selected 16 medical images arbitrarily from our image database as reference 
images, which involve 8 CT images and 8 MRI images. We stop when the step size 

cΔ falls below an a priori given threshold, which is set to 0.3 for all levels except the 
last, where we set it to 0.1. We do the experiments on the 16 groups of images by our 
and reference algorithms, respectively. The final results of the experiments evaluated 
by three experts in Nanfang hospital is shown in table 1. 

Table 1. The comparison of 16 groups of test results  

item  CT image MR image Sum 
A 8 8 16 
B 8 5 13 
C 100% 62.5% 81.25% 
D 3 2 5 
E 37.5% 25% 31.25% 

Notes: A:the sum of samples; B:the sample quantity of accurate matching by our 
algorithm;C:the accuracy rate by our algorithm; D:the sample quantity of accurate 
matching by the reference algorithm; E: the accuracy rate by the reference algorithm 

In the experiments by our fuzzy algorithm, we achieve a total accuracy rate of 
81.25% and even an accuracy rate of 100% for CT images, while the reference 
algorithm fails and only achieve a total accuracy rate of 31.25%. Our algorithm is 
superior to the reference one obviously under the same condition. 

4.2   Analysis of Test Results 

We select one group of MRI image to illustrate the results of registration. We yielded 
images of 128×128 pixels and 64×64 pixels respectively through the fuzzy 
multiresolution algorithm. The results of the experiment are shown in Fig.1.  

All figures and table prove that the fuzzy algorithm can align not only the rotation 
and displacement deformation, but also the elastic one. The precision of registration is 
also up to sub-pixel level. The reference algorithm can align most of the deformation in 
the test image, but in some regions the misaligning between the test and reference 
images can be seen clearly.  

4.3   Noise Dependence 

We select 5 groups of images with accurate matching result as test samples, in which 
we added various levels of noise to demonstrate the influence of noise on the 
registration results. We set the variance of noise as 0.1 and 0.5, respectively. Under the 
noisy condition, our algorithm gets a better result than the reference one. The accuracy 
rate curves of the two algorithms are shown in Fig. 2. 
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Fig. 1. The comparison of the experiment results by different algorithms 

 
Fig. 2. The comparison of the accuracy rate with noise of different variance 

Warped test image by our algorithm Warped test image by the reference algorithm 

Reference image Test image 

Our algorithm 
Reference algorithm 
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5   Conclusion 

We propose a fuzzy elastic registration algorithm that can align both rigid and elastic 
deformation. The fuzzy algorithm is more robust than the reference algorithm. Under 
the condition without noise, the fuzzy algorithm achieved a total accuracy rate of 
81.25% and even 100% for CT images. Reference algorithm didn’t get a satisfying 
result and only 5 groups succeed in matching. In the 5 groups of test with different level 
of noise, the accuracy rate by the reference algorithm decline more greatly than the 
fuzzy algorithm with the increase of noise variance. The experiments show that the 
fuzzy algorithm we proposed is more accurate and robust than the reference algorithm. 
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Abstract. Therapeutic outcomes from radiation treatment planning (RTP) may be 
improved by combining tumour metabolism data with anatomic location via 
PET/CT image fusion. The aim of this work is to reveal the spatial accuracy, re-
producibility and speed of registration techniques used in Gemini PET/CT system 
as a part of quality assurance. A multi-layer alignment device and a Rando Man 
phantom were used to validate PET/CT intrinsic alignment. Known transforma-
tions were performed to simulate different misalignment between PET and CT 
phantom images. Point-based and image-based registration techniques used to 
correct misalignment were assessed and compared quantitatively by measuring 
absolute distances between the centroids of corresponding fiducial markers in the 
registered volumes. In comparison with phantom studies using image-based regis-
tration, point-based registration shows better spatial accuracy and faster correla-
tion, but longer time and more effort in human intervention. The experimental 
findings confirm that Gemini can produce robust intrinsic image alignment, as 
well as the accurate PET/CT image registration with careful user interaction.  

1   Introduction 

Integrated with powerful digital techniques, positron emission tomography (PET) is 
evolving as the most rapidly growing functional imaging modality in nuclear medi-
cine and oncology. The high accuracy of PET in cancer detection and staging has 
major implications in terms of improving the treatment planning and avoiding unnec-
essary treatment and its associated morbidity and cost[1].  

PET scans alone, however, are usually difficult to interpret properly in the absence 
of precise anatomical correlation [3,4]. In spite of the improved specificity and sensitiv-
ity of tumor assessment by using anatomical images side-by-side[4] or registering PET 
images with CT[5,6], PET images display few anatomical landmarks thus preventing 
direct correlation with structural images[2]. Registration uncertainty also occurs due to 
device, protocol and time-point differences in data acquisition with patient reposition-
ing, patient scheduling and possible involuntary and incontrollable organ motion and 
inter-section anatomical changes[3,6]. With the recent advent of hybrid PET/CT 
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units[3,7] which can perform both CT and PET in a single imaging session and produce 
fast intrinsic-fusion of CT and PET images with minimal user interaction, these issues 
should be one step closer to a solution. Because of the exact anatomic correlation of 
metabolic abnormalities, the resulting improvement in precision and accuracy of in-
line PET/CT[8] offers a number of advantages to augment the treatment planning of 
head-and-neck cancer, including improved confidence in image interpretation, re-
duced risk of tumor-tissue misses, minimized dose of radiation to normal tissues, 
improved volume delineation as a result of decreased  inter-observer variability, and 
avoidance of ineffective radiation therapy[9, 10].  

The accurate multi-modality image registration is essential for the determination of 
the utility and impact of PET in the radiotherapeutic management of head and neck 
cancers. The registration procedure includes the registration of functional PET images 
with anatomical CT images at the site of PET Centre; and the registration of anatomi-
cal CT images with the co-ordinate system of planning CT scans used for RTP at the 
site of Radiation Oncology Centre. The registration process, however, is prone to 
errors and mis-registration could impact on the accuracy of target tumor volume de-
lineation in RTP. This article presents ad hoc validations and results in verifying the 
reproducibility of intrinsic alignment, as well as in comparing and evaluating the 
spatial accuracy and speed of extrinsic PET/CT registration techniques, as a part of 
quality assurance at the site of PET/CT. 

2   Materials and Methods  

2.1   Phantoms with Fiducial Markers  

A multi-layer fixture bearing six non-collinear 10mCi 22Na point sources was sup-
plied by Philips for the use of image alignment calibration and verification. The fix-
ture was also employed to perform validation experiments of PET/CT registration 
using the point sources as fiducial markers.  

A partial Alderson Rando Man Phantom (head through mid-femur) was used to 
simulate more complex structure of human bodies. Nine metal cannulas, each of 
which is 1.2 mm in internal diameter and about 8 mm long, were used as external 
fiducial markers affixed to the landmarks throughout the surface of the Rando phan-
tom. The cannulas containing 18F-FDG with concentration of 1MBq/mL can be easily 
recognized in both CT and PET emission images. To prevent the leakage of radioac-
tivity while allowing the reuse of the cannulas, one end of the cannula was properly 
clamped and the other end remaining open. The opening end can be sealed properly 
with the plastic tape once filled with the radioactivity. 

2.2   Acquisition Protocols  

Diagnostic PET and low-dose CT scans were performed using a GeminiTM open sys-
tem (Philips Medical Systems Inc., Cleveland, OH, USA) which integrates a Philips 
Mx8000 EXP Dual-slice Helical CT Imaging System and a Philips-ADAC AllegroTM 
full-ring 3D PET Imaging System with PixelarTM GSO crystal detectors. An initial CT 
“Surview” scan was performed to determine the exact axial examination range fol-
lowed by a non-contrast CT scan using the typical scan parameters: 3.2 mm slice 



224 S.J. Gong et al. 

thickness with 3.2 mm spacing, 600 mm displayed field of view (FOV) with a 
512x512 matrix, peak voltage of 120 kVp, 30 mAs per slice, spiral pitch of 1.5 and 
tube rotating time of 0.75 s. Once the acquisition was completed, the reconstructed 
CT image was automatically transferred from the acquisition computer to the PET 
reconstruction workstation in both DICOM and PETviewTM formats for registration. 

PET emission scans were acquired using 576 FOV, 4 minutes per bed position  
(1 bed position for the alignment fixture and 11 bed positions for the Rando phan-
tom), and reconstructed using RAMLA[11]. Transmission scans acquired using 
740MBq 137Cs transmission source were used for non-uniform attenuation and scatter 
correction of emission sinograms. Transmission images were also applied to correlate 
to CT using image-based registration method[12]. 

2.3   Phantom Experiments 

We performed four validation studies to test the accuracy and coherence of intrinsic 
PET/CT coordinates prior and posterior to a series of clinical scans during a 6-month 
period, in which the multi-layer fixture and Rando phantom were scanned individu-
ally with both modalities in a single imaging session. The reconstructed CT and PET 
images were fused directly without any interference. 

PET/CT image sets of each phantom acquired in the validation studies were artifi-
cially misaligned by applying ten pre-defined transformations on PET transmission 
and emission images (see Figure 1), five with translation only and five combined with 
translation and rotation. The resulting images were re-sampled and saved as the simu-
lated images. 

    

Fig. 1. Simulated Misalignment of PET Transmission and CT Images (left: translation of the 
alignment phantom image; right: translation and rotation of the Rando phantom image) 

2.4   Image Registration 

All CT and PET image pairs were imported in SyntegraTM, a Philips built-in software 
package with Gemini for registration and fusion. Syntegra allows manual or semi-
automated PET/CT image registration using a rigid-body transformation of linear and 
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angular position. It also enables visualizing registered image volumes in either inde-
pendent or fusion mode.  

Theoretically a sequence of rigid-body transformations can be used to map a given 
point in an active image volume (A) to a stationary reference image volume (B): sys-
tem misalignment between the two coordinate systems, local transformation in the 
coordinate system of the active volume, and translation between the active image 
origin and the coordinate system origin of the active volume. The sequence of trans-
formation to achieve the active/reference volume registration can be expresses as the 
combination of local and global transformation: 

* * *( )B Local O O Ss s sP R R R P T T Tγ β α= − + +                                  (1) 

* * *( )Local A O OP R R R P T T Tγ β α= − + +                                     (2) 

where, 
B

P is the position vector of a given point in the coordinate system of the refer-

ence volume and 
AP is the position vectors of the same point in the coordinate system 

of the active volume, respectively; 
LocalP is the position vector in the domain of the 

active volume after the local transformation about the active image origin. 
ST , 

OT and 

T  are the translation vectors of active/reference system offsets, active origin/image 
iso-centre offsets and absolute active image adjustment in x-, y- and z-axis, individu-
ally. R , R  and R  are the local tilt, yaw and roll matrices of the active volume; and 
Rs , Rs  and Rs  are the active/reference system tilt, yaw and roll matrices, respectively. 

2.4.1   Point-Based Registration 
In Syntegra, an active and its reference image can be correlated by adjustingg trans-
formation parameters of registration system directly. A movable active image can also 
be shifted and rotated manually to align with its reference image using 2D/3D graphic 
tools. In addition to these two interactive methods, two semi-automated image regis-
tration approaches are also provided: point-based and image based registration. 

Point-based registration starts with the manual localization of fiducial points (FP) 
in CT and PET emission images, followed by an automated algorithm which gener-
ates a rigid-body transformation producing the least-square fit of the selected FP 
pairs[13]. At least three non-collinear FP pairs are needed to establish a unique trans-
formation between two images. 

Fiducial localization involves manual determination of intensity-weighted cen-
troids of fiducial markers in PET images and geometrical centroids of fiducial mark-
ers in CT images using a cross-hair pointer in Syntegra with careful visual inspection. 
The selected point is correlated in trans-axial, coronal and sagittal 2D views which 
can compensate for parallax error by altering viewpoints. The displacements about the 
origin of 3D Cartesian image coordinates were also displayed in each window. 

Although manual fiducial indication is labour-intensive, the more fiducial points 
that are used, the higher accuracy the registration can achieve[14]. To compromise the 
time used to select and define FPs and reliability of the algorithm to find an optimized 
transformation, 3 fiducial pairs were selected for the multi-layer phantom images and 
6 fiducial pairs for Rando phantom images. The other FPs not used for the registration 
algorithm were also inspected after the registration to assess target registration error. 
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2.4.2   Image-Based Registration 
Image-based registration approach in Syntegra employs similarity measures of rele-
vant image segments to seek an optimized global transformation. We utilized the 
algorithm maximizing the normalized mutual information[15] for PET/CT registration 
as recommended[16]. In the registration, PET transmission images with much more 
anatomical information than emission images were correlated to CT images first.  The 
resulting transformations were applied to PET emission images for quantitative as-
sessment of registration errors at fiducial markers.  

2.5   Visual Assessment and Quantitative Analysis  

Registration errors were measured quantitatively as the mean distances between the cor-
responding FP sets, since the co-location between the FPs in the reference and correlated 
image volumes indicates a correct registration. Appropriate fiducial localization is essen-
tial for the accurate assessment of all registration techniques applied. The visual tech-
nique in which the correlated volumes displayed and inspected in fusion mode was used 
in all procedures involving manual fiducial localization. 

3   Results 

Table 1 shows the validation results of PET/CT intrinsic alignment. The table lists the 
mean and standard deviation of misalignment at 6 FP pairs in multi-layer phantom 
images and 9 FP pairs in Rando phantom. The misalignment (< 1mm) of four align-
ment validation studies shown in Table 1 verify that intrinsic PET/CT image pairs can 
be correlated accurately and robustly with no need of any further registration. 

The results of point-based and image-based registration are showed in Table 2. The 
mean and standard deviation of registration errors in 5 different simulations for each 
group of data are listed. In comparison with studies using 22Na point sources, image 
registration of studies using metal fiducial markers shows better accuracy, by either 
point-based or image-based registration. Generally point-based registration shows 
better spatial accuracy (< 1mm) than the image-based registration (< 4mm). 

Table 1. Validation of PET/CT intrinsic alignment 

x ± y ± z ± 

pre 0.00 ± 0.48 0.79 ± 0.47 0.00 ± 0.00

post 0.01 ± 0.01 0.59 ± 0.64 0.00 ± 0.00

pre 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00

post 0.01 ± 0.01 0.00 ± 0.01 0.00 ± 0.00
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Table 2. Registration errors in point-based and imaged-based registration 

x ± y ± z ± 

trans. 0.22 ± 0.09 0.19 ± 0.12 0.07 ± 0.02

trans.
& rot.

0.14 ± 0.13 0.33 ± 0.11 0.09 ± 0.22

trans. 0.10 ± 0.06 0.09 ± 0.05 0.05 ± 0.06

trans.
& rot.

0.08 ± 0.06 0.11 ± 0.07 0.05 ± 0.05

trans. 2.25 ± 0.59 2.48 ± 0.11 2.14 ± 0.34

trans.
& rot.

3.18 ± 0.97 2.41 ± 0.37 2.64 ± 0.31

trans. 1.28 ± 0.67 1.55 ± 0.30 1.78 ± 2.01

trans.
& rot.

1.56 ± 0.60 1.77 ± 0.47 1.87 ± 1.85

Registration Error (mm)
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Table 3 shows the processing time used for point-based and image-based registra-
tion procedures respectively. Although the processing time of point-based registration 
(< 1s) was much faster than the image-based registration (> 30s), the total time to 
complete a point-based registration was longer than the image-based registration due 
to the manual determination of fiducial points.  

Table 3. Processing time used for the point-based and image-based registration procedures 

manual
(minute)

automated
(second)

total
(minute)

trans. < 0.5 >5

trans.
& rot.

<0.5 >5

trans. < 0.5 >15

trans.
& rot.

<0.5 >15

trans. 0 30.17±8.28 < 1

trans.
& rot.

0 33.08±11.18 <1

trans. 0 164.06±10.89 <5

trans.
& rot.

0 179.98±63.91 <5

Image Sets with 
Simulated Misalignment
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4   Discussion 

Many PET/CT clinical and research applications require a very high degree of spatial 
accuracy of image registration. In this work we demonstrate a series of phantom ex-
periments and simulation, as well as comparison and evaluation the spatial accuracy 
of different techniques used for PET/CT rigid-body image registration. 

The accuracy of point-based image registration depends on the proper indication of 
non-collinear corresponding fiducial points. Our experience confirms that fiducial 
localization is labor-intensive and prone to error[17]. To minimize the observer vari-
ability, all fiducial localizations were repeated at least once. Any difference was re-
viewed and corrected using a final agreement. We find that cross visualization of PET 
and CT image volumes in fusion mode is helpful in localizing and identifying mis-
alignment.  

In comparison with studies using image-based registration, point-based registration 
shows better spatial accuracy (see Table 2) and faster correlation, but longer time and 
more effort in human intervention (see Table 3). Combining image- and point-based 
procedures to register image sets will be helpful in achieving optimal accuracy and 
speed.      

Generally in registration of physically misaligned images, only the subject is con-
sidered as vital and can be manually segmented from patient bed in both CT and PET 
images using some sub-volume tool. The sub-volume selection was not performed in 
the registration of the simulated image sets reported here. The good results of the 
simulated data registered using normalized mutual information algorithm may be 
caused by the higher lever of similarity between scan volumes, in which the upper-
pallet was reoriented together with phantoms using a global transformation. 

Our validation study used the image sets of phantoms with fiducial markers and its 
simulation, of which the true transformation is known a priori. Any registration ap-
proach applied on the misaligned images can be evaluated using this “gold standard”. 
In clinical practice, however, the correlation truth of human subject to test the  
registration against is rarely known. Assessment results may be limited by the refer-
ence method rather than the registration method being tested[18]. Further assessment  
of image registration on clinical studies can be verified using consistency test[2] alter-
natively. 

5   Conclusion 

The theoretical and experimental findings so far prove that Gemini can perform ro-
bust intrinsic system alignment with a spatial accuracy less than 1 mm. The semi-
automated techniques in Syntegra can produce accurate PET/CT image registration 
with careful user interaction. The spatial accuracy of point-based registration is less 
than 2 mm and is less than 4mm in image-based registration. Overall the spatial accu-
racy of image registration is better than the spatial resolution of the PET scanner used 
(4.5 mm - 5 mm). This performance is sufficiently accurate for most PET/CT applica-
tions. Our experiences of comparing and evaluating the image display and processing 
also confirm that fiducial indication in fused PET/CT is superior to visual correlation 
of PET and CT. 
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3D Mouse Brain Reconstruction from Histology
Using a Coarse-to-Fine Approach
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Abstract. The Allen Brain Atlas project aims to bridge the divide be-
tween genomics and neuroanatomy by mapping the expression of the
entire C57BL/6J mouse genome onto a high-resolution 3D anatomical
reference atlas of the mouse brain. We present the image registration
approach used to generate this anatomical reference from histological
sections. Due to the large number of sections (525) and the presence of
debris and distortions, a straightforward alignment of each slice to its
neighbors fails to accurately recover the 3D shape of the brain. On the
other hand, multimodality registration of histology slices to an MRI ref-
erence compromises correspondences between neighboring slices. Our ap-
proach combines the high-frequency component of slice-to-slice histology
registration with the low-frequency component of the histology-to-MRI
registration to produce a coarse-to-fine reconstruction that is accurate
both in its global shape and in the alignment of local features.

1 Introduction

The problem of reconstructing a 3D volume from histological sections arises fre-
quently in animal model research. In real experimental data, the reconstruction
problem is made difficult by high incidence of artifacts such as tearing of tis-
sue and debris. We present a new coarse-to-fine reconstruction algorithm that
combines a graph-theoretic slice-to-slice reconstruction with a global histology-
to-MRI reconstruction to achieve high accuracy both in the alignment of features
between slices and in the 3D shape of the reconstructed brain. Our algorithm
was used to generate the anatomical reference atlas of the mouse brain for the
Allen Brain Atlas (ABA) project at the Allen Institute for Brain Science (AIBS).

The goal of the ABA project is to generate a freely accessible database of the
expression of some 24,000 genes that compose the mouse genome. High resolution
in situ hybridization in coronal and sagittal slices is used to map gene expression
onto the reference atlas, allowing researchers to make complex queries relating
gene expression and neuroanatomy [1]. Already, over 50% of the genome has
been mapped and is available to researchers at www.brain-map.org.
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2 Prior Work

Often, the problem of volumetric reconstruction of the mouse brain is reduced to
finding the appropriate 2D registration algorithm for aligning consecutive slices,
and the 3D volume is constructed by concatenating the transformations result-
ing from pairwise registrations (e.g., [2]). As argued in Sec. 3.2, good interslice
alignment does not guarantee accurate reconstruction of the 3D brain shape.
In [3, 4], such reconstruction is followed by non-rigid 3D registration to MR mi-
croscopy data. In [5], the reconstruction problem is formulated as a simultaneous
system of 2D elastic registrations, for which an efficient solver is available. The
input to this system is a rigid reconstruction that uses the principal axis trans-
formation, which is driven by the shape of slice outlines. The rigid reconstruction
method presented in this paper is intensity-driven and should provide a better
initialization for elastic registration. In the Harvard High Resolution Brain Atlas
[6], 3D reconstruction is aided by landmarks that are identified manually. Sim-
ilarly, [7] uses surface registration and hand-drawn contours to warp MRI data
to histology. In contrast, our algorithm is automatic, allowing high throughput.

3 Materials and Methods

3.1 Histology and Reference MRI Data

The brain from a 56 day old sacrificed C57BL/6J strain mouse was surgically
removed, chemically frozen and sectioned in the coronal plane into 525 0.25 μm
thick slices using a microtome. Sections were fixed, treated with Nissl counter-
stain that stains nucleic acids in neuronal somata and dendrites, and imaged,
producing high-resolution color images with pixel size 0.95 μm2. While histo-
logical images capture incredible anatomical detail (Fig. 1d), they also tend to
suffer from artifacts, such as stretching, tearing and displacement of tissue that
occurs during microtomy, as well as debris that appear during slice preparation
and staining. These artifacts are illustrated in Fig. 1a,b.

In addition to the histological data, we use a 3D reference volume that was
constructed by averaging a set of 30 in vivo MRI scans from 10 mice of the same
strain as the specimen used to generate histology data. The reference volume
has voxel size 12.9 μm3 and is shown in Fig. 3.

3.2 Coarse-to-Fine Reconstruction Overview

Due to the large number of slices and high incidence of artifacts, the straight-
forward approach of aligning and warping each slice to its neighbors and con-
catenating the resulting transformations does not yield acceptable results. In
particular, the accumulation of errors can result in the z-shift effect, where,
though each slice is registered well to its neighbors, the overall 3D shape of the
reconstruction is distorted, such that the imaginary grid lines parallel to the
z-axis in the true anatomy become curves in the reconstruction. Another prob-
lem is the propagation of errors due to the presence of highly distorted sections
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a. b. c.

d. e. f. g.

Fig. 1. a-d: Examples of Nissl-stained histological sections used in the reconstruction
(a: a slice with tissue distortion; b: a slice with debris; c: an artifact-free slice; d: a
subregion of slice c at full resolution). e-f: Examples of masks computed automatically
for each slice. The region falling outside the mask is shaded yellow.

that are unlikely to register well to their neighbors and can cause gross discon-
tinuities in the reconstructed anatomy. To address these issues, we developed a
multi-stage method that combines segmentation, coarse-to-fine rigid reconstruc-
tion and deformable reconstruction to generate an atlas that is accurate both in
terms of local anatomical continuity and global 3D brain shape.

We begin by giving an outline of our approach, with each step detailed in the
subsequent sections. In the first stage, we use active contour segmentation to
compute binary masks of the brain in each slice, so as to keep debris and dis-
lodged tissue from contributing to the reconstruction. Next, we perform pairwise
rigid registrations between neighboring slices to generate a locally accurate, fine-
scale estimate of the reconstruction. By computing transforms not only between
consecutive slices but between slices within a certain z-distance from each other,
we reduce the z-shift and avoid negative effects of highly distorted slices. This ini-
tial 3D reconstruction is then registered to the reference MRI, producing a glob-
ally accurate, coarse-scale estimate of the reconstruction. The high-frequency
component of the fine-scale estimate is then combined with the low-frequency
component of the coarse-scale estimate to produce the final coarse-to-fine rigid
reconstruction. This rigid reconstruction is then used to initialize a deformable
registration, which produces a high quality 3D atlas.

3.3 Automatic Mask Computation

The background in histological slices can be highly inhomogeneous, containing
debris, stains, and the edges of the glass plate. To keep these features from influ-
encing slice alignment, we separate the brain from the background in each slice
automatically, using a combination of active contour level set segmentation with
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region competition [8] and mathematical morphology. The image force governing
contour evolution is based on an estimate of object and background probabilities,
which are estimated using thresholds. Active contour segmentation separates the
brain from the more homogeneous background regions and island-like debris but
it does not separate it from artifacts that are adjacent to it, such as the smear
in Fig. 1c. We use erosion followed by dilation and taking the largest connected
component to mask out such artifacts. Parameters of this masking approach
may vary from slice to slice; however, in practice, a common set of parameters
‘works’ for over 90% of the slices; for the remaining slices, the researcher adjusts
the parameters after examining the segmentation results. It may be possible to
fully automate parameter selection in the future by using histogram analysis to
set thresholds and by requiring masks computed on consecutive slices to have
similar shape. Examples of masks are shown in Fig. 1e-g.

3.4 Fine-Scale Alignment

Our fine-scale alignment algorithm aims to minimize z-shift and the negative
effects of badly distorted slices. This is accomplished by

1. Registering each histology slice not only to its nearest neighbors but also to
neighbors located up to 5 slices away. The Insight Toolkit rigid registration
pipeline [9] with the Mattes et al. mutual information metric [10] is used.

2. Constructing a weighted graph where the vertices represent the slices, the
edges represent registrations between neighboring slices and the edge weights
reflect the misregistration error, as detailed below.

3. Designating one slice as the reference and finding the shortest path from
every vertex in the graph to the reference. These paths skip over those slices
which register poorly to their neighbors, as Fig. 2 illustrates. For each slice,
the chain of rigid transformations corresponding to the shortest path is con-
catenated, providing a rigid transformation from the slice to the reference.

The weight of the graph edge connecting vertices i and j is given by

Wij = (1 + Mij)|i − j|(1 + ε)|i−j| , (1)

where Mij is the value of the mutual information metric mapped to the range
[0, 1] (smaller values correspond to better registration), and ε is a positive con-
stant that modulates between too little slice skipping, which results in propa-
gation of registration error due to distorted slices, and too much slice skipping,
which can disturb fine-scale alignment between neighbor slices. When Mij for
all slice pairs are equal, no slices are skipped.

3.5 Coarse-Scale Alignment

To recover the gross shape of the mouse brain, we compute rigid registrations
between histology slices and corresponding cross-sections of the reference MRI
atlas. To compute the correspondences, we first use rigid 3D registration to
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Fig. 2. An illustration of the graph-based reconstruction approach where each slice is
registered to several neighbors and ‘bad’ slices (those that register poorly to neighbors)
are skipped when aligning ‘good’ slices to the reference. Gray arcs indicate edges in
the graph, i.e., transforms computed using rigid registration, and black arrows show
the shortest path from the leftmost slice to the reference.

align the MRI volume to the histology volume reconstructed by the fine-scale
algorithm; we then resample the MRI in the space of the histology volume, and
extract 525 slices in the z-dimension. Both the 3D MRI-to-histology registration
and the subsequent 2D histology-to-MRI registrations use the Mattes mutual
information metric.

3.6 Coarse-Fine Recombination

The coarse and fine approaches described above produce 3D volumes that each
have their own inadequacies. Fine-scale reconstruction aligns features well be-
tween neighboring slices, but does not eliminate z-shift. The coarse reconstruc-
tion attempts to recover the true shape of the brain, but it does so at the cost
of local accuracy, as the registrations taking two neighboring histology slices
into corresponding MRI slices are likely to disturb the alignment between the
histology slices. In order to generate a single volume that fuses the attractive fea-
tures of both reconstructions, we combine the high-frequency component of the
fine-scale reconstruction with the low-frequency component of the coarse-scale
reconstruction. This is achieved simply by smoothing across the z dimension
the parameters of the transforms that map histology slices into corresponding
MRI slices. Gaussian smoothing with σ = 100μm is applied to each component
of the rigid transforms between histology and MRI. This makes the mapping
from the fine-scale histology reconstruction into the MRI volume smooth across
the z axis, maintaining the local correspondences established during slice-to-slice
histology registration, while shifting the overall shape of the reconstructed vol-
ume to match that of the MRI brain. The choice of σ was made empirically
by estimating that the misregistration error of histology-to-MRI registration is
approximately equal to four times the error in histology-to-histology registration.

3.7 Diffeomorphic Reconstruction

The deformable component of our reconstruction method will be presented else-
where and is not the focus of the present paper. We summarize it here for the
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sake of completeness. The reconstruction borrows the ideas from mesh fairing
algorithms, where meshes are smoothed by moving each vertex to the average of
its neighbors over a number of iterations. In our iterative method, each slice is
deformed towards the average of its neighbors using a diffeomorphic inverse con-
sistent algorithm [11]. This iterative deformation essentially smooths the shape
of anatomical structures across the z dimension. Akin to variable conductance
diffusion, badly distorted slices, which are identified during rigid reconstruction,
are assigned low weights in the iterative shape averaging process, preventing the
distortions from propagating into neighboring slices, while allowing the good
slices to influence the deformation of their badly distorted neighbors.

4 Results

Sagittal and horizontal cross-sections of the fine-scale, coarse-scale and coarse-
to-fine rigid reconstructions are shown in Fig. 3. The thick blue outline indicates

MRI Fine

Coarse C-to-F

MRI Fine Coarse C-to-F

Fig. 3. MRI-based reference image and results of rigid histology reconstruction,
including fine-scale reconstruction (slice-to-slice histology), fine-scale reconstruction
(histology-to-MRI) and combined coarse-to-fine reconstruction. The outline of the brain
surface in the MRI reference is overlaid as a blue curve on the reconstruction results.
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Fig. 4. Deformable reconstruction result

the boundary of the brain in the MRI reference. The z-shift occurring in fine-
scale reconstruction is clearly evident, particularly in the sagittal cross-section.
Poor local alignment of the coarse-scale rigid reconstruction is evident when
comparing the cerebellum and other high-contrast structures between fine-scale
and coarse-scale reconstructions. Visual inspection of the coarse-to-fine rigid
reconstruction shows that it is superior to both fine-scale and coarse-scale re-
constructions. The results of the deformable reconstruction are shown in Fig 4.
Given the excellent initialization provided by the rigid method, the deformable
method produces a reconstruction that is accurate in terms of both the overall
3D shape and the continuity of anatomical features across the z dimension.

5 Discussion and Conclusions

A drawback of our method is the number of parameters that are chosen empiri-
cally. These include parameters for mask computation, the factors in computing
the weights of the graph in fine-scale reconstruction and the width of the Gaus-
sian filter used in the coarse-fine combination. It is difficult to set optimal values
for these parameters because the ground truth against which the reconstruction
result could be compared is not available. To a great extent, we rely on visual
inspection to assess reconstruction quality but our future work will focus on gen-
erating quantitative assessments. One potential approach is to measure how well
our reconstruction from coronal slices can match sagittal sections obtained from
specimens from the same strain. This 2D/3D registration metric is especially
useful because the ABA reference atlas itself is subsequently used as a reference
to which slices from sagittal in situ hybridization are registered.

In conclusion, we have presented the details of a coarse-to-fine rigid 3D recon-
struction technique for histological data. The approach combines the local ac-
curacy of intensity-based registration between neighboring slices with the global
accuracy of registration to a reference MRI dataset. Our results indicate that
the combined coarse-to-fine approach is superior to either of its coarse and fine
components taken on their own. Followed up with deformable diffeomorphic
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reconstruction, our approach generates a high quality anatomical murine brain
atlas that has been adopted by the Allen Institute for Brain Science as the
reference for mapping gene expression.
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Abstract. Since the 1970’s B-splines1 have evolved to become the de facto stan-
dard for use in curve and surface representation. This resulted in a relatively re-
cent proliferation of nonrigid image registration techniques based on B-splines.
These techniques fall under the general Free-Form Deformation (FFD) approach
in which the object to be registered is embedded within a B-spline object. The
deformation of the B-spline object represents the transformation space of the reg-
istered object. In this paper, we describe the implementation of our finite element
methodological (FEM) approach using B-splines. This registration framework
subsumes essential components of currently popular FFD image registration al-
gorithms, while providing a more principled and generalized control mechanism
for nonrigid deformation. Our implementation constitutes an extension of the ex-
isting FEM library of the Insight Toolkit (ITK). We discuss the theoretical impli-
cations and provide experimental results of our proposed methodology.

1 Introduction

FFD approaches to modeling are characterized by embedding the object of interest
within an encompassing geometric primitive. The resulting deformation of the object
occurs via the transformation of the surrounding geometric space. Due, in large part,
to their “local support” property and computational efficiency, FFD image registration
based on B-splines has received substantial attention in the research literature. In this
paper, we discuss our FEM-based B-spline approach to image registration, which is a
generalization of current FFD B-spline image registration algorithms. In this sense, we
are not proposing a new FFD algorithm which distinguishes itself from existing algo-
rithms by one of the features discussed below, but rather we are claiming that current
approaches can be subsumed within our proposed FEM image registration framework.

The constitutive framework of the general registration algorithm is best elucidated
within the registration schema outlined in [2] which follows closely that of [3] and [4].
According to [2], the three major components comprising the general image registration
algorithm are:

1 Contrary to popular usage in the CAGD community, we follow de Boor’s distinction discussed
in [1] of using the term ‘B-spline’ to denote the shape function of limited support and not the
B-spline object (e.g curve, surface, volume).
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– the similarity metric,
– the optimization strategy, and
– the transformation model.

While the transformation model addressed in this paper is B-spline-based, it is impor-
tant, in distinguishing previous work, to discern the absence or presence of an explicit
regularization component of the transformation. In addition, discussion of the first two
components will prove helpful in differentiating previous work.

The explicit regularization term is best understood by interpreting the image registra-
tion problem in a Bayesian decision-theoretic context [5]. Potential solutions are viewed
as posterior probabilities defined in terms of both the data (likelihoods) and the regular-
ization (prior probabilities) components. The often-used variational formulation follows
by employing an assumption of Gaussianity for the probability distribution functions.
We write this general variational energy, Π , as

Π(I, J, T ) =
∫

Ω

(Π∼(I, J, T )(x) + ΠR(T )(x)) dΩ, (1)

where I and J are the fixed and moving images, respectively, and T is the transforma-
tion which maps between I and J . Π∼ is the similarity metric and ΠR is the explicit
regularization term. Some of the algorithms discussed below rely solely on the B-spline
transform, T , to provide the desired continuity, at the exclusion of the ΠR contribution.

2 Previous Work

Both Szeliski et al. [6] and Thévenaz et al. [7] use the Levenberg-Marquardt optimiza-
tion strategy to formulate their respective B-spline image registration algorithms. The
latter work was extended in [8] to include an explicit regularization term designed to
minimize the weighted divergence and curl of the resulting deformation field. Unlike
the aforementioned algorithms, which seek to minimize a mean squares image intensity
similarity metric (MSQ), Rueckert et al. [9] and Mattes et al. [10] use normalized mu-
tual information (NMI). The former method uses a gradient descent optimization strat-
egy whereas the latter is optimized via a limited-memory, quasi-Newton minimization
package (LBFGS). Also, the algorithm in [9] employs an explicit regularization term in
the form of the well-known thin-plate energy to prevent topological folding of the de-
formation field for high-resolutions of the control point grid. This work was extended in
[11] to include an isochoric regularization term, i.e. a regularization term which penal-
izes deviations of the Jacobian from unity. These algorithms are summarized in Table
1. By taking advantage of the modular nature of the ITK image registration framework
[3], the basic elements of each of these algorithms can be reimplemented using ITK
with relative ease.

While these FFD methods are geometrically-based, finite element methods are inher-
ently physics-based. Physics-based approaches to image registration were pioneered by
Broit and Bajcsy [12] in which image registration is modeled via the deformation of a
physically-defined elastic object. Regularization occurs via the Cauchy-Navier operator
derived from continuum mechanics, which is given by

L = μ∇2 + (λ + μ)∇(∇·), (2)
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Table 1. Summary of FFD B-Spline Registration Algorithms

Method Similarity Metric Optimization Strategy Explicit Regularization

Szeliski [6] MSQ Levenberg-Marquardt no
Thévenaz [7] MSQ Levenberg-Marquardt no
Sorzano [8] MSQ Levenberg-Marquardt Divergence and Curl
Rueckert [9] NMI Gradient Descent Thin-Plate
Mattes [10] NMI LBFGS no

Rohlfing [11] NMI Gradient Descent Isochoric

where the Lamé constants, λ and μ, specify the material properties. This approach was
later recast in variational form in [5] (see Equation (1)). This reformulation suggests the
use of well-established finite element solution methods. Currently, this strategy is freely
available for use and development as part of the ITK FEM software library. The imple-
mentation of B-spline finite elements within the ITK library allows for a generalized
approach to B-spline image registration where the similarity metrics and regularization
terms are easily tailored, in a modular fashion, to the problem of interest. This also al-
lows for the essential components of the algorithms listed in Table 1 to be duplicated
within our framework.

3 FEM Subsumption of FFD B-Spline Image Registration

The outline given of previous work provides the necessary context for understanding
the subsumption of the major components of existing FFD methods into our FEM-based
method.

3.1 Similarity Metric

Numerous similarity metrics are available for image registration in addition to the met-
rics used by the algorithms given in Table 1. Measures such as normalized cross corre-
lation, Mattes’ mutual information, and pattern intensity, as well as others, are all avail-
able within the ITK library. Instead of creating a new FFD algorithm for each metric,
our FEM-based image registration framework allows for modular exchange of metrics
dictated by the user.

3.2 Optimization Strategy

Although not explicit in the previous work listed, except for [6], it is assumed that finite
difference approximations were used to estimate the value of the cost function and its
derivatives for nonlinear optimization. Although justification is typically derived from
a Taylor expansion perspective, finite differences can be thought of in terms of gen-
eralized FEM. From this vantage, finite difference solutions are simply FEM approxi-
mations based on localized, discontinuous shape functions. Although such methods are
easy to implement, theoretically speaking, they are less accurate than corresponding
FEM approaches [13].
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3.3 Explicit Regularization

Of the six algorithms surveyed in Table 1, three use no explicit regularization. These
algorithms depend on the inherent continuity of higher order B-splines to satisfy smooth-
ness constraints. Of the other three, the work in [9] uses only an extremely tiny con-
tribution of the thin-plate energy regularization. The weighting value, λ = 0.01, was
determined empirically and is only used when the control point density is sufficiently
large (although the determination of “sufficiently large” is left unexplained). In [11] it
was noted that the thin-plate energy has no inherent volume-preserving capabilities
which motivated the introduction of a Jacobian-based regularization term. Unfortu-
nately, there are scenarios in which this assumption is invalid, e.g. intersubject brain
registration. In [8] the capability of regularizing in terms of both the divergence and
curl of the displacement field is proposed. For many of the results given in the paper,
however, there was no contribution from the curl regularization term whereas the di-
vergence term had a weighting of 4 (assumed to be set empirically). In contrast to the
algorithm-specific regularization of the listed FFD methods, FEM-based image regis-
tration allows for simple, modular exchange of regularization types (e.g. membrane or
thin-plate regularization).

4 FEM Image Registration Using B-Splines

4.1 Shape Functions and Nodal Placement

At its conceptual level, FEM solutions discretize the continuum of the problem domain
into elements. Each of these elements has a governing set of both nodes (or control
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Fig. 1. Shape functions: (a) C1 Lagrangian, (b) C2 Lagrangian, (c) C9 Lagrangian, (d) C1

B-spline, (e) C2 B-spline, and (f) C9 B-spline
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Fig. 2. Placement of nodes for Lagrangian (left) versus B-spline elements (right)

points) and shape functions. In calculating the value of the FEM solution at a specific
point within a given element, the shape functions are used to average, in a weighted and
smooth fashion, the contribution of the corresponding nodal values. Finite elements
using B-splines, and a comparison with more traditional elements, have been investi-
gated previously [14] in a general FEM context. We compare B-spline elements with
Lagrangian elements, due to their historical ubiquity in the FEM literature [13], in order
to provide a point of reference in discussing B-spline elements.

For simplicity in comparing shape functions, we plot the univariate shape functions
of both the Lagrangian and B-spline varieties. Multivariate extensions are simply the
tensor product of the respective univariate set. These shape functions, parameterized
over the interval [−1, 1], are illustrated in Figure 1. Note that, when specified, the FFD
B-spline image registration algorithms surveyed use cubic B-splines (see Figure 1(e)).

The Lagrangian shape functions are interpolatory in that the function values are iden-
tical with the nodal values at the nodal locations. This is, in general, not the case with
B-spline elements (the linear case is the sole exception in which Lagrangian and B-
spline shape functions are identical). Also, notice that the B-spline shape functions are
strictly nonnegative over the interval in contrast to their Lagrangian counterparts. The
Lagrangian shape functions also exhibit undulations meaning that the nodal influence
in calculating the elemental function value does not necessarily decrease monotonically
with distance as it does with B-splines. This undulatory phenomenon is exacerbated in
higher order shape functions, e.g. Figure 1(c).

In addition to the distinct shape functions, nodal location differs between Lagrangian
and B-spline elements. For a given mesh size, B-spline elements span a subspace of the
Lagrangian elements so the theoretical accuracy will necessarily be less [14]. However,
where computational costs prohibit fine resolution of Lagrangian element meshes (as
in the case with certain image registration problems), B-spline elements provide a less
costly substitute while guaranteeing a specified order of continuity. Shown in Figure 2
are two diagrammatic representations of the nodal placement for four C2 Lagrangian
elements (left) and four C2 B-spline elements (right). Note that neighboring Lagrangian
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elements only share bordering nodes whereas neighboring C2 B-spline elements share
12 common nodes.

4.2 Multiresolution Strategy

The current ITK FEM registration methodology allows for a mulitresolution approach
in which more global deformation can be inferred using a low resolution grid which can
then be propagated to higher levels for more localized deformation. We generalize the
hierarchical approach for doubling the resolution of cubic B-spline surfaces discussed
in [15] to bivariate and trivariate B-spline objects of arbitrary order. This allows for
propagating the FEM B-spline registration solution at a lower level to the next higher
level.

5 Experimental Results

We experimentally demonstrate results from our image registration framework using
two 2-D brain slice images (size = 256×256) from two different subjects. These images
are shown in Figures 3(a) and 3(b) which comprise the moving and fixed images, re-
spectively. Preprocessing of the images included histogram matching. The mean square
image intensity similarity metric was used in each of the examples as was a single level
resolution. Two different grid sizes were used (64×64 and 128×128 elements). These
grids were composed of quadratic (C1) B-spline elements using both membrane and
linear elastic regularization models [13].

The image registration results are illustrated in Figure 4. The top row consists of
the results obtained from the membrane regularization model whereas the bottom row

(a) (b)

Fig. 3. 2-D Brain slice images used to demonstrate the FEM-based B-spline image registration
methodology. (a) Original moving image and (b) fixed image.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Registered images using different B-spline elements and Lamé constants: (a) membrane
element, μ = 25000, λ = 0, 64 × 64 nodal mesh; (b) membrane element, μ = 25000, λ = 0,
128 × 128 nodal mesh; (c) membrane element, μ = 50000, λ = 0, 128 × 128 nodal mesh;
(d) linear elastic element, μ = 25000, λ = 0, 64 × 64 nodal mesh; (e) linear elastic element,
μ = 25000, λ = 0, 128 × 128 nodal mesh; (f) linear elastic element, μ = 50000, λ = 0,
128 × 128 nodal mesh;

contains the results from the linear elastic model. The first column of image results in
Figure 4 were derived from grids of size 64×64 elements whereas the last two columns
of images were derived from grids of size 128 × 128 elements. Experimentation led to
the selection of the Lamé constants used for the membrane results. Lower values for
μ in the membrane model caused folding of the deformation field which dictated our
selection of the given parameters. We employed the same μ and λ values used in the
membrane model for the linear elastic model for comparative purposes.

To assess the quantitative difference between the resulting images, we list various
measures in Table 2. These measures include the mean squares intensity difference
between the resulting image and the fixed image as well as the minimum and max-
imum Jacobian of the resulting transformation. These numbers seem to accord with
intuition. The results derived from a higher resolution grid have a lower mean squares
error value. Also, we see that the membrane regularization produces deformation fields
with extreme Jacobian values closer to unity and lower mean squares error values than
the linear elastic regularization.
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Table 2. Quantitative measures for the results in Figure 4

Membrane Membrane Membrane Linear El. Linear El. Linear El.
64 × 64 128 × 128 128 × 128 64 × 64 128 × 128 128 × 128
λ = 0 λ = 0 λ = 0 λ = 0 λ = 0 λ = 0

μ = 25000 μ = 25000 μ = 50000 μ = 25000 μ = 25000 μ = 50000
(a) (b) (c) (d) (e) (f)

Mean squares 237.7 190.0 193.0 221.7 175.1 206.1
Min. Jacobian 0.72 0.52 0.42 0.65 0.28 0.53
Max. Jacobian 1.36 1.73 1.76 1.48 1.76 1.61

6 Conclusion

We provided a discussion of our open-source ITK finite element library for nonrigid im-
age registration based on B-splines and how it is related to current FFD B-spline image
registration approaches. Experimental results were also illustrated using components
unique to the FEM framework. Although specific FFD implementations are perhaps
easier to implement, the FEM approach provides for more principled control over the
nonrigid deformation. While we find the discussion presented in this paper meritorious,
we recognize that the scope of our experimental results was minimal and that other
areas of investigation would certainly be welcomed by the research community. Such
areas of investigation would include, but not be limited to, the consequences of using
other regularization models (e.g. thin plate splines), the affects of the multiresolution
strategy, differences in the results produced by different orders of B-splines, or the af-
fects of different similarity metrics. Such comprehensive discussion will certainly be
included in future work.
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Abstract. In this paper, we propose a computationally efficient method
for medical image registration. The centerpiece of the approach is to re-
duce the dimensions of each image via a projection operation. The two
sequences of projection images corresponding to each image are used for
estimating the registration parameters. Depending upon how the projec-
tion geometry is set up, the lower dimension registration problem can be
parameterized and solved for a subset of parameters from the original
problem. Computation of similarity metrics on the lower dimension pro-
jection images is significantly less complex than on the original volumet-
ric images. Furthermore, depending on the type of projection operator
used, one can achieve a better signal to noise ratio for the projection im-
ages than the original images. In order to further accelerate the process,
we use Graphic Processing Units (GPUs) for generating projections of
the volumetric data. We also perform the similarity computation on the
graphics board, using a GPU with a programmable rendering pipeline.
By doing that, we avoid transferring a large amount of data from graph-
ics memory to system memory for computation. Furthermore, the perfor-
mance of the more complex algorithms exploiting the graphics processor’s
capabilities is greatly improved. We evaluate the performance and the
speed of the proposed projection based registration approach using vari-
ous similarity measures and benchmark them against an SSE-accelerated
CPU based implementation.

1 Introduction

Automatic image registration is nowadays an essential component in medical
imaging systems. The basic goal of intensity based image registration techniques
is to align anatomical structures in different modalities. This is done through an
optimization process, which assesses image similarity and iteratively changes the
transformation of one image with respect to the other, until an optimal align-
ment is found [1]. Computation speed is a critical issue and dictate applicability
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of the technology in practice. On the other hand feature based methods are
computationally more efficient, however, they are notoriously dependant on the
quality of the extracted features from the images [2].

In intensity based registration, volumes can directly be aligned by computing
a volumetric similarity measure accessing the voxel intensities at each iteration.
Since the amount of computations performed at each iteration is high, the overall
registration process is very slow. In the cases, where Mutual Information (MI)
is used, sparse sampling of volume intensity could reduce the computational
complexity while compromising the accuracy [3, 4]. In [5], authors propose a
projection based method for 2D-2D image registration. In this method, the pro-
jections along the two axes of the image are computed. Horizontal and vertical
components of the shift is then computed using one-dimensional cross correla-
tion based estimator. They show that the method is robust in the presence of
temporal and spatial noise and computationally efficient compared to the 2D
correlation based shift estimator. In [6], authors propose to formulate 3D-3D
registration cost function as the summation of three 2D-3D optimization cost
functions. The optimization is then done concurrently on the sum of the cost
functions, which are identically parameterized. Furthermore, images are pre-
processed to extract a binary segmentation. Projection images from the binary
segmentation are used for computing the similarity measures.

Our proposed approach is a combination of the methods in [5] and [6]. We
compute the projection images from two volumes and setup a cost function to
register these images within a space, which is a subset of the space of the orig-
inal rigid registration transformations. We perform these registrations succes-
sively for various projection geometries in order to estimate all the registration
parameters of the original problem. We further optimize the performance of
projection computation and 2D-2D registration similarity computation by using
GPUs. We perform a validation study comparing the accuracy and the speed of
the proposed method with a traditional volumetric 3D-3D MI-based approach.

2 Method

2.1 Proposed Registration Method

Conventional volumetric rigid registration algorithms, optimize 6 degrees of free-
dom (DOF) transformation parameters in order to maximize the volumetric
similarity measure.

T̃6 = arg max
T6

S3 (If , T 3
T6(Im)

)
. (1)

where T6 is a six DOF homogenous transformation matrix, T 3 is the six DOF
mapping operator, S3 estimates the similarity metric between two volumes, and
If and Im are the fixed and moving volumetric data, respectively. Let us define
an orthographic projection operator P , which projects the volume points onto
an image plane using a projection matrix Π. Without loss of generality, assuming
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that the volume world coordinates are located at the center of the fixed volume,
any plane projection can be written as:

ΠP = Π0P, (2)

where Π0 is a trivial 3 × 4 orthographic projection matrix with the principle
axis along z and P is a 4 × 4 homogenous transformation matrix encoding the
principle axis of the orthographic projection matrix ΠP. Since we only consider
orthographic projections and assume that the center of the volume maps to
the center of the plane of projection, the translation part of the matrix P is
zero. Once we compute the projection images using operator PP, which uses
the projection matrix ΠP, we can re-formulate the registration optimization as
follows:

T̃3
P = arg max

T3
P

S2
(
PP(If ), T 2

T3
P
(PP(Im))

)
, (3)

where T3
P is a three DOF homogenous transformation matrix defined in the

plane of projection specified by P, T 3 is a three DOF mapping operator, S2

computes the similarity metric between the 2D images. There exists an explicit
relationship between the reduced dimension homogenous transformation matrix
T3

P and the original six DOF transformation matrix T6. Let us formulate T3
P

as follows:

T3
P =

⎡⎣ cos(θ) −sin(θ) tx
sin(θ) cos(θ) ty

0 0 1

⎤⎦ (4)

where θ is in-plane rotation and tx and ty are in-plane translations. It can easily
be shown that:

T6 = P−1Π

0 T3

PΠ0P (5)

where � depicts the transpose operation. From equation 5, it is apparent that
only part of the space represented by T6 is covered by the in-plane transforma-
tion from T3. And that depends on the projection transformation in P. In-plane
translations from T3 are translations along the first two axes of the transformed
coordinate system by P and the in-plane rotation is the rotation about the third
axis. In order to cover the whole space of 3D rigid transformation, one easy
solution is to consider three projections, as follows:

ΠP0 = Π0P0 = Π0

[
r1 r2 r3 0

0
 1

]
ΠP1 = Π0P1 = Π0

[
r2 r3 r1 0

0
 1

]
ΠP2 = Π0P2 = Π0

[
r3 r1 r2 0

0
 1

] (6)

where 0 is vector of zero and ri for i ∈ [1 3] are columns of the rotation matrix
embedded in the corresponding homogenous transformation. Finally the succes-
sive optimization approach is outlined in Algorithm 1.
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precompute the projections of the fixed volume using ΠP0 to ΠP2

registration transformation is set to identity
while there is a significant incremental change in registration parameters do

successively choose a projection matrix from ΠP0 to ΠP2

compute the projection of the transformed moving volume
perform registration between the corresponding projection images as in
equation 3
use the equation 5 to update the registration transformation

end
Algorithm 1: The proposed registration approach

Regardless of how computationally expensive a similarity measure estimation
is, a volumetric registration method requires k ∗ N3 operations for an optimiza-
tion loop with k iterations, where N is the number of voxels. For identical number
of iterations, assuming two rounds of registrations per projection, the number
of operations for the proposed method is 2 ∗ N3 + k ∗ N2. Furthermore, the
projection operation in this case can be performed using a graphics processing
unit, as it is explained in the following section.

2.2 Implementation

The computation performance offered by today’s video boards by far surpasses
that of currently available CPUs - while a Pentium 4 3GHz CPU can theoretically
reach 6 GFLOPS 1, synthetic benchmarks have shown the NVIDIA Geforce 6800
Ultra GPU to reach 40 GFLOPS. This fact, together with the inherently parallel
architecture of graphics processors, has made the approach of GPU programming
highly attractive for accelerating algorithms in different domains. For instance,
robot motion planning [7], flow visualization [8], segmentation [9], and solving
sets of algebraic equations [10] are proposed to be implemented using GPUs.
In the domain of medical image registration, GPUs have been mainly used to
speed up the generation of Digitally Reconstructed Radiographs (DRRs) using
hardware-accelerated volume rendering techniques. Our aim is now to implement
the proposed algorithm including the computation of image similarity using a
GPU.

Graphics processors are highly specialized for a single application - han-
dling three-dimensional geometric data, project it onto the two-dimensional
computer display and apply a range of visual effects, like texturing, lighting
and shading. There are two major steps in the rendering process. In the vertex
shading step vertex-specific data like normals or texture coordinates are manip-
ulated. Whereas, in the fragment shading step pixel-specific data like texturing
or blending are processed. Both these steps can be customized by loading a so-
called shading-program or shader onto the GPU. A different program is needed
for each of these two steps. In the process of computing similarity measures,
the major part, i.e., examining the image intensities, has to be done for each

1 Billions of floating-point operations per second.
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of the image pixels. This part is implemented as a fragment shader. However,
the computation of the texture coordinate increments that have to be added
to the current coordinate, in order to examine the pixel’s neighborhood, can
also be implemented within the vertex shading unit. Aside from these, all the
other processes taking place in the rendering pipeline (e.g., rasterization) must
be regarded as computational overhead. Therefore, simple similarity measures
perform rather poorly in comparison to a classical CPU implementation, while
for the more complex measures, i.e., the ones requiring a fragment shader with
a high number of operations, the pipeline’s overhead becomes less significant.
Our results show that, depending on the measure’s complexity, the GPU-based
computation can be from three times slower to ten times faster than a non-
accelerated CPU-based implementation.

The specialized nature of the GPU environment imposes several technical
restrictions that do not apply to classic CPU programming. For example, the
pipelined structure of the GPU implies that data can flow only in one direction,
which means that the respective programs cannot modify their input values, nor
can they read from the output buffers. This means that information-theoretic
similarity measures like MI cannot be implemented. Furthermore, the pixels
rendered onto the screen are usually represented as positive 8 bit RGBA color
values. Thus in each rendering pass, up to four values can be computed for
each pair of pixels in the images to be registered. Similarity measures requiring
more values accordingly have to be split up into multiple rendering passes. Fi-
nally, with respect to the precision of the computed color data, 16 and 32 bit
floating-point color buffers are also supported by the more modern video boards.
However, these color buffers are always off-screen rendering buffers that cannot
be directly displayed, and are both more difficult to use and impose a drop in
performance. However, in the results section, we show that using a low-accuracy
8 bit color buffer can result in a registration just as accurate as using 32 bit
floating point data on the CPU. Because 8 bit color intensities can take only
positive values, any negative number automatically gets clamped to zero. As
some of the measures we compute, and also the image gradients, yield negative
values, we decided to use two color channels to store the value by employing the
following scheme: R = x, G = −x ⇒ x = R − G.

The similarity of two images must be provided as a scalar value, e.g. the sum
or average of all pixels, in order to represent a cost function to be optimized.
However, summing up the color values in the frame buffer or within a texture
is not a typical graphics application. In order to avoid the slow copying of the
computed image from the GPU to the main RAM for averaging on the CPU,
we use the mipmapping capability of the video card. Mipmaps represent succes-
sively smaller versions of an initial texture, having half the width and height of
the previous mipmap. They are obtained by taking four neighbored pixels from
the input image and averaging them into one pixel in the output image. The
main problem of mipmaps arises from the fact that the repeated summation and
averaging of 8 bit data (e.g., 8 times for a 256 × 256 image) is followed by a
truncation/rounding to 8 bits. These rounding errors can potentially affect the
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(a) (b)

Fig. 1. (a)Similarity measure computation process on GPU, and (b) depicts the round-
ing error and image size with respect to mipmapping level

registration accuracy. To work around this problem, we use a hybrid averaging
approach. Instead of using the last mipmap consisting in a single pixel, we gen-
erate the 4th mipmap, which is 16 × 16 pixels in the case of 256 × 256 images,
and then copy this very small image to the main memory for CPU averaging. By
doing this, we significantly reduce the amount of data that has to be transferred
from video to system memory without introducing more rounding errors than
necessary, resulting in a good compromise between speed and accuracy.

We implemented ten similarity measures of different complexity: Sum of
Squared Differences (SSD)[11], Sum of Absolute Differences (SAD), Correlation
Coefficient (CC)[11], Ratio of Image Uniformity (RIU)[12], Pattern Intensity
(PI)[13], Gradient Correlation (GC), Gradient Difference (GD)[14], Gradient
Proximity (GP), Sum of Local Normalized Correlation (SLNC)[15] and Variance-
Weighted Sum of Local Normalized Correlation (VWC)[15]. In order to
compute the projection images, we used a 3D texture based volume render-
ing technique. Both intensity accumulation or maximum intensity projection
(MIP) techniques can be used for generating the projection images. Vector val-
ued projection images can also be derived from the volumes. These images pro-
vides much richer information regarding the volume at each specific projection.
The proposed method can be used along with all the various volume projection
options.

3 Results

We validated our methods by performing intensity-based registration on two
data sets. The first comprised two CT scans of a patient’s pelvis, before and
after treatment, respectively. The second data was a CT scan of a megavolt
cone-beam CT volume of a skull phantom. The standard registration approach,
fully sampling the moving volume using the MI similarity metric, yielded very
stable results and was thus used as ground truth. A registration run took several
minutes using this method. A cube with 10cm width placed at the volume center
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Table 1. Similarity Measure computation times

Measure CPU CPU, SSE GPU, mipmaps GPU, CPU GPU, hybrid
SAD 0.17ms 0.05ms 0.54ms 3.52ms 0.60ms
SSD 0.17ms 0.05ms 0.54ms 3.54ms 0.59ms
RIU 1.20ms 0.32ms 0.55ms 3.56ms 0.62ms
NCC 0.87ms 0.17ms 0.53ms 3.56ms 0.59ms
GC 2.46ms 0.55ms 1.15ms 7.12ms 1.29ms
GD 2.86ms 0.70ms 0.73ms 3.71ms 0.76ms
GP 1.82ms 0.45ms 0.72ms 3.70ms 0.75ms
PI 14.83ms 7.93ms 1.21ms 4.20ms 1.27ms
LNC 18.32ms 6.69ms 3.14ms 6.11ms 3.17ms
VWC 18.35ms 6.59ms 1.78ms 4.77ms 1.81ms

Table 2. Registration results for pelvis CT

GPUmm1 GPUmm2 GPUmm3 GPUCPU1 GPUCPU2 GPUCPU3
Measure GD SAD PI PI GD RIU
TRE [mm] 1.57 2.29 2.86 0.95 0.98 1.02
σ(TRE) 0.60 0.83 4.3 0.22 0.31 0.21
t [s] 2.4 2.1 2.8 7.04 5.92 5.26

GPUhyb2 GPUhyb2 GPUhyb3 CPUSSE1 CPUSSE2 CPUSSE3
Measure PI GD RIU GD PI SAD
TRE [mm] 0.9 0.98 1.04 0.82 0.98 1.01
σ(TRE) 0.23 0.31 0.23 0.25 0.30 0.28
t [s] 4.00 3.5 2.9 6.76 13.02 6.57

was used for computing the Target Registration Error (TRE). Table 1 lists the
computation times for computing the respective similarity measures for 256×256
pixel 8 bit grayscale images on the CPU with/without SSE-II acceleration, and
on the GPU with mipmap and/or CPU-based averaging. These benchmarks were
executed on an Intel Pentium4 2.4 Ghz system with an NVidia GeForce 6800GT
graphics accelerator.

For validating our implementation, we used two pairs of volumetric data sets.
We will present the three most accurate measures for four implementations:
GPU-based using mipmaps for averaging (GPUmm), GPU-based using the CPU
for averaging (GPUCPU ), GPU-based using a combination of mipmaps and the
CPU for averaging (GPUhyb) and CPU-based with SSE (CPUSSE) accelera-
tion. First set of experiments are done on two CT scans of the same patient’s
pelvis taken at different points of time. The image intensity and contrast differed
slightly, with some features being visible in only one of the volumes.

For the second run we used scans of a skull acquired with different types
of CT scanners. The fixed volume was acquired using a regular CT scanner,
while a megavolt cone-beam CT was used for the moving volume. Thus, the
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Table 3. Registration results for skull CT / MV-CT

GPUmm1 GPUmm2 GPUmm3 GPUCPU1 GPUCPU2 GPUCPU3
Measure SAD SSD RIU SSD NCC SAD
TRE [mm] 2.32 3.27 5.65 1.57 1.65 1.67
σ(TRE) 0.71 1.94 3.58 0.09 0.18 0.04
t [s] 2.34 2.27 2.59 5.35 5.38 5.29

GPUhyb2 GPUhyb2 GPUhyb3 CPUSSE1 CPUSSE2 CPUSSE3
Measure SSD NCC SAD RIU NCC SSD
TRE [mm] 1.68 1.85 1.86 1.37 1.52 1.54
σ(TRE) 0.35 0.50 0.17 0.23 0.10 0.09
t [s] 2.99 2.98 2.99 7.19 6.21 6.49

Fig. 2. First row depicts the projection images from a CT volume, second row shows
the corresponding images from Mega-Voltage CT volume

two volumes differed quite strongly with respect to brightness and contrast, and
some features, i. e. skin, were visible in one volume but not in the other.

The results from tables 2 and 3 illustrate that using modern graphics hard-
ware for similarity measure computation can significantly accelerate the process
of medical image registration. A hybrid approach, as explained in the previ-
ous section, yields results that are as accurate as a CPU-based implementation,
in as much as a quarter of the time. The experiments also show that some
similarity measures, namely Pattern Intensity and Gradient Difference, deliver
very accurate registration even when mipmaps are used for completely summing
up the resulting pixels. When registering data sets acquired by using differ-
ent CT energy levels, similarity measures examining spatial information instead
of just the intensity at the individual pixel location deliver very poor results.
Still, measures examining pixel intensities alone, especially the Sum of Absolute
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Differences, yield a very accurate registration. The centerpiece of the approach,
which enabled using the GPUs conveniently for registration of volumetric data
has been the projection based method.

4 Summary

In this paper, we presented a projection based approach for registration of med-
ical images. Successive registration of two dimensional projection images can
yield an accurate volumetric registration. The dimension reduction property of
this method, enables convenient usage of GPU for both computing the pro-
jections and furthermore estimating the two dimensional similarity images. A
series of comparative studies are presented to demonstrate both the accuracy
and computational efficiency of the proposed method.

References

1. Maintz, J., Viergever, M.: A survey of medical image registration. Medical Image
Analysis 2 (1998) 1–36

2. Hill, D.L.G., Hawkes, D.J., et. al.: Registration of MR and CT images for skull
base surgery using pointlike anatomical features. British Journal of Radiology 64
(1991)

3. Colignon, A., et al.: Automated multi-modality image registration based on infor-
mation theory, IPMI (1995) 263–274

4. Wells, W., Viola, P., et al.: Multi-modal volume registration by maximization of
mutual information. Medical Image Analysis 1 (1996) 32–52

5. Cain, S.C., Hayat, M.M., Armstrong, E.E.: Projection-based image registration in
the presence of fixed-pattern noise. IEEE Transactions on Image Processing 10
(2001) 1860–1872

6. Chan, H., Chung, A.C.S.: Efficient 3D-3D vascular registration based on multiple
orthogonal 2D projections, Second International Workshop on Biomedical Image
Registration (WBIR) (2003) 301–310

7. Lengyel, J., Reichert, M., Donald, B.R., Greenberg, D.: Real-time robot motion
planning using rasterizing computer graphics hardware, SIGGRAPH (1990) 327–
335

8. Weiskopf, D., Hopf, M., Ertl, T.: Hardwareaccelerated visualization of time-varying
2D and 3D vector fields by texture advection via programmable per-pixel opera-
tions, VMV (2001) 439–446

9. Rumpf, M., Strzodka, R.: Level segmentation in graphics hardware. Volume 3.,
ICIP (2001) 1103–1106
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Abstract. We present a novel approach for a combined homogeniza-
tion and registration technique. Medical image data is often disturbed
by inhomogeneities from staining, illumination or attenuation. State-of-
the-art approaches tackle homogenization and registration separately.
Our new method attacks both troublemakers simultaneously. It is mod-
eled as a minimization problem of a functional consisting of a distance
measure and regularizers for the displacement field and the grayscale cor-
rection term. The simultaneous homogenization and registration enables
an automatic correction of gray values and improves the local contrast.
The combined approach takes slightly more computing time for an opti-
mization step as compared to the non-combined scheme and so is much
faster than sequential methods. We tested the performance both on aca-
demic and real life data. It turned out, that the combined approach
enhances image quality, especially the visibility of slightly differentiable
structures.

1 Introduction

A generic task in modern image processing is the integration and/or comparison
of data obtained from different images. Particularly in a medical environment,
there is a huge demand for comparing pre- and post-intervention images, in-
tegrating modalities like anatomy (obtained, e.g., from computer tomography)
and functionality (obtained, e.g., from positron emission tomography), or recon-
struction of two-dimensional projections to a three-dimensional volume (applies
to all tomography techniques and histology).

This task is often disturbed by two sources. The first source is related to a ge-
ometrical change of the displayed objects. This change might be introduced, e.g.,
by motion and/or positioning of objects, distortions and/or changes of imaging
devices etc. A well-known technique to compensate these types of distortion is
the so-called image registration, see, e.g., [5, 7] and references therein. The second
source is related to a different appearance of the displayed objects. In histology,
e.g., the section typically shows inhomogeneities that are completely related to
staining. As a consequence, even after a perfect registration one still observes
differences of the displayed objects. While for some applications, e.g., the in-
tegration of different modalities, these differences are more or less the goal of
the image processing, for other applications, like histology or ultra-sound, these
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differences are artificial. Typically, homogenization is used to compensate these
disturbances.

The state-of-the-art approach to the problem is to separate homogenization
and registration and to tackle them independently. The homogenization, for ex-
ample, might be treated based on morphological operations, illumination mod-
els, and/or statistical approaches (Markov random fields). For the registration
part, there exists a variety of different and well-understood similarity measures
in image registration like, for example the sum of squared differences, cross-
correlation, or mutual information [2, 11, 9, 7]. All these measures focus on the
maintenance of grayvalues and hence none of these measures allow for a correc-
tion of grayvalues. There are also some heuristic based schemes for a combined
approach. However, these are based one a limited parametric model. A typi-
cal example is a straightforward globally linear model, which allows for a mean
adaption and a contrast correction [8].

In this paper, we present a novel approach for a combined homogenization
and registration technique. Our new approach is based on a sound mathematical
formulation that attacks both troublemakers simultaneously. The new method is
attractive for grayvalue correction in a variety of applications, including histolog-
ical serial sectioning (staining), optical flow (illumination), digital radiography
(attenuation), and magnetic resonance images (device/user dependency).

The paper is organized as follows. In Section 2 we introduce our notation and
give a mathematical foundation of the new combined approach. In Section 3, we
describe particular homogenization approaches. Some implementation issues are
discussed in Section 4, results for academical as well as real life examples are
given in Section 5, and a discussion is given in Section 6.

2 The Theoretical Setup

For convenience, we prefer a continuous formulation of the problem. Therefore,
our reference R and template T images are mappings from Ω ⊂ R

d to the real
numbers R. The mathematical framework covers all image dimensionalities d.
However, since our main interest is in histology, we focus on d = 2.

A standard distance measure in image registration is the L2-norm of the
difference image, also called sum of square differences, which is basically the
energy of the difference image,

D(R, T ) := ‖T − R‖2 :=
∫

Ω

(
T (x) − R(x)

)2
dx, (1)

cf., e.g., [1, 7]. Introducing the deformation u and the deformed template

T [u], where T [u](x) := T (x + u(x)), (2)

the basic registration goal is to minimize D(R, T [u]) with respect to the geome-
try u. Note that this problem is ill-posed [3, 7] and thus needs to be regularized.
Since this regularizer is not central to this paper, for the sake of simplicity, we
only focus on the elastic potential S, see [7] for details and further regularization.
However, our approach has no limitations to this particular regularization.
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In order to compensate inhomogeneities, we introduce a correction function c
which in addition enables a multiplicative gray value change of the deformed
template

cT [u], where (cT [u])(x) := c(x) · T (x + u(x)) (3)

and our final distance measure ‖cT [u] − R‖2 is to be minimized with respect
to the geometry u and the homogeneity correction c. For the particular choice
c ≡ 1, we get the “standard” registration problem back. Setting c(x) := 1 for
all x where T (x) = 0 and c(x) := R(x)/T (x) otherwise, we obtain a trivial
minimizer without any geometrical correction. It is obvious that this solution
is not helpful. Thus, an additional regularizer H for c has to be introduced.
We discuss choices in the next section. The final formulation of the registration
problem reads

J(u, c) := ‖cT [u] − R‖2 + αS[u] + βH[c] != min, (4)

where α and β are regularization parameters and the minimization is with re-
spect to u and c simultaneously. It is very important, that this formulation
already combines the minimization of geometry and homogeneity.

3 Homogeneity Correction

The central and remaining question is, how to regularize the homogeneity cor-
rection c? The answer to this question is related to the variation of c. If c varies
to much (e.g., c = R/T ), the solution of (4) is meaningless. If on the other hand
c does no vary (e.g., c = 1) it will not compensate inhomogeneities. We therefore
propose a gradient based regularizer,

Hp[c] :=
∫

Ω

‖∇c‖pdx.

Obvious choices for p are p = 2 (diffusivity) or p = 1 (total variation). Simple
tests show that the first choice leads to blurred images cT [u]. We thus prefer the
total variation approach, since it leads to piecewise continuous corrections.

Alternatively, one could also use an explicit regularized version. For example,
in histology we might change mean gray value and contrast by a parametric
model

(cT )(x) =
{

γ1T (x) + γ2, T (x) �= 0
0, else .

Here, c is parameterized by γ1 and γ2 and varies basically over linear maps. Due
to this limitations, no additional regularization is needed and we may set β = 0
in (4).

4 Implementation

The new approach is based on a variational formulation of the combined reg-
istration problem. From this mathematically sound approach, we derive Euler-
Lagrange equations as a system of necessary conditions for a minimizer. The
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efficient solution of these partial differential equations is the backbone of our
algorithm. However, any adequate numerical scheme can be used.

The Euler-Lagrange equations for (4) are given by

Ju = 2c(cT − R)∇T − 2α(μΔu + (μ + λ)∇∇ · u) = 0, (5a)
Jc = (cT − R)T − ∇ · ∇c

‖∇c‖ = 0. (5b)

This system of non-linear partial differential equations is discretized using stan-
dard finite differences. In principle, a fast multigrid solver has to be used in order
to solve these equations efficiently. However, a proper multigrid treatment of to-
tal variation - particularly if combined with the elastic operator - is non-trivial
and topic of current research and a forthcoming paper. Here, the particular so-
lution scheme is minor and we thus take the solution scheme based on [4] and a
straightforward solve for the total variation. Note that our limitation to periodic
boundary conditions for the displacement is only due to this particular solu-
tion scheme but not part of our method. For a solution of the discrete version
we use a non-linear Gauss-Seidel approach. The implementation is coded under
MATLAB [6] and executed on an AMD Athlon XP 2700+ with 2 GB RAM. The
overall computation time is about one minute for the academical and about three
minutes for the real life data. Note that this code runs completely under MAT-
LAB and is far away from being optimized or tuned. We basically aim to show
the ability of the new method rather than to focus on a smart implementation.

5 Results

We implemented our new scheme and tested the performance on a variety of
different examples ranging from academical to real life data. For the academ-
ical examples, it is obvious, that the new method benefits from the combined
approach. This manifests not only in a much faster execution time, but most
importantly in significantly improved registration results. It is easy to con-
struct examples where inhomogeneous regions lead to miss-registration of non-
simultaneous schemes. Particularly, we present detailed results for an academical
and a real life example.

We tuned our academical example in order to emphasize the power of the
simultaneous approach. Our reference image displays a disk, our template image
a smaller disk with a grayscale ramp in its interior. Without a simultaneous ap-
proach, the inner ramp immediately leads to displacements within these regions;
see Figure 1c. With the simultaneous approach, we are not only able to com-
pute a reasonable displacement field (Figure 1g) but also a grayscale correction
(Figure 1e and 1f). Only due to this correction we are enabled to display the
final cT [u], which in this example happens to be a perfect copy of the reference
image. Parameter used: α = 2e5, β = 1e3, λ = 0, μ = 1, ten iterations (for the
simultaneous approach, the minimizer was already obtained after 4 iterations).

Examples for a real life application are also presented. Here we show the
results of a registration of two images from consecutive sections within a serial
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(a) reference (b) template (c) grid (d) T out

(e) 3d view of c (f) 2d view of c (g) grid with correction (h) c · T out

Fig. 1. Academic example: (a) disk as reference, (b) smaller disk with ramp as tem-
plate, (c) deformed grid (no grayscale correction), (d) deformed template (no grayscale
correction), (e) 3d and (f) 2d visualizations of the homogenization correction, (f) de-
formed grid (with grayscale correction), (g) deformed and corrected template

sectioning of about 800 sections; see [10] for an overview on the overall procedure.
As expected, the grayscale correction is not as important as in the academical
example. This can be observed from the two deformed grids (Figure 2e and
2h) which more or less look the same. However, a staining trend in this data
(visible in the difference image Figure 2f) has been resolved with our combined
approach. In contrast to the plain scheme, the combined registration approach
results in a visually more pleasing and anatomically superior three-dimensional
reconstruction. Parameter used: α = 5e5, β = 5e4, λ = 0, μ = 1, 40 iterations.

6 Discussion

We present a novel registration scheme which enables an unified and simultane-
ous treatment of the combined registration problem. Our numerical experiments
indicate, that the new approach outperforms the uncombined scheme. Our aca-
demical examples indicate that the results obtained from the combined scheme
are much more reliable. This also applied for the histological serial sectioning,
however, the phenomena are less pronounced. Still and most importantly, the
automatic homogenization enables an automatic correction of gray values and
improves the local contrast. Thus, it leads to a much better visualization of
otherwise non-differentiable structures.

Based on an additional solution step for the grayscale correction, the combined
scheme takes slightly more computing time for an optimization step as com-
pared to the non-combined scheme. However, this disadvantage is compensated
by the fact, that the registration and grayscale correction results are obtained
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Histological serial section: (a) reference, (b) template: consecutive section, (c)
3d visualization of the homogenization, (d) deformed template (no grayscale correc-
tion), (e) deformed grid (no grayscale correction), (f) difference image (no grayscale
correction) (g) deformed template (with grayscale correction), (h) deformed grid (with
grayscale correction), (i) difference image (with grayscale correction)

simultaneously. A faster and more efficient implementation of the combined ap-
proach is topic of further research. In addition, we like to adapt the combined
approach to other areas of applications.
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Abstract. Mutual information has been successfully used as an effec-
tive similarity measure for multimodal image registration. However, a
drawback of the standard mutual information-based computation is that
the joint histogram is only calculated from the correspondence between
individual voxels in the two images. In this paper, the normalized mutual
information measure is extended to consider the correspondence between
voxel blocks in multimodal rigid registration. The ambiguity and high-
dimensionality that appears when dealing with the voxel neighborhood is
solved using uniformly distributed random lines and reducing the number
of bins of the images. Experimental results show a significant improve-
ment with respect to the standard normalized mutual information.

1 Introduction

Multimodal image registration is an important component of medical image
analysis used to match two images. It consists in finding the transformation
that brings one image into the best possible spatial correspondence with the
other one. A common method of solving the registration task is to treat it as a
mathematical optimization problem, using a similarity measure to quantify the
quality of the alignment of the two images for any given transformation.

Some information-theoretic measures, such as mutual information (MI) [1, 2]
and normalized mutual information (NMI) [3], have become a standard refer-
ence due to their accuracy and robustness. However, MI-based methods have a
number of well-known drawbacks, such as grid [4] and interpolation effects [1, 5].
Another limitation of these methods is that the computation of the joint his-
togram is calculated from the correspondence between individual voxels in the
two images. In recent years, different approaches have considered a region-based
correlation to compute image similarity [6, 7, 8, 9, 10].

In this paper, we propose a new MI-based framework that uses structural
information in an image. The NMI measure is extended to consider the corre-
spondence between regions of voxels in multimodal rigid registration. The prob-
lems that appear when dealing with the voxel neighbourhood are tackled using
uniformly distributed random lines. Experimental results analyze the behaviour
of our approach when neighbour intensity values are considered.
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This paper is organized as follows. In Section 2 we survey background and
related work, and in Section 3 we present our framework for image registration.
Experimental results are given in Section 4.

2 Background and Related Work

In this section we review some basic information-theoretic measures [11, 12],
the application of mutual information to image registration [1, 2, 13] and recent
approaches which take into account spatial information.

2.1 Information-Theoretic Measures

Let X be a finite set, let X be a random variable taking values x in X with
distribution p(x) = Pr[X = x]. Likewise, let Y be a random variable taking
values y in Y. The Shannon entropy H(X) of a random variable X is defined by
H(X) = −

∑
x∈X p(x) log p(x) and measures the average uncertainty of random

variable X . If the logarithms are taken in base 2, entropy is expressed in bits.
The conditional entropy is defined by H(X |Y ) = −

∑
x∈X ,y∈Y p(x, y) log p(x|y),

where p(x, y) = Pr[X = x, Y = y] is the joint probability and p(x|y) = Pr[X =
x|Y = y] is the conditional probability. The conditional entropy H(X |Y ) mea-
sures the average uncertainty associated with X if we know the outcome of
Y . The joint entropy H(X, Y ) is given by the Shannon entropy of the joint
probability distribution. The mutual information between X and Y is defined
by I(X, Y ) = H(X) − H(X |Y ) = H(Y ) − H(Y |X) and measures the shared
information between X and Y .

We review now the definition of block entropy and entropy rate. The notation
used here is inspired by the work of Feldman and Crutchfield [12]. Given a chain
. . . X−2X−1X0X1X2 . . . of random variables Xi taking values in X , a block of
L consecutive random variables is denoted by XL = X1 . . . XL. The probability
that the particular L-block xL occurs is denoted by p(xL). The Shannon entropy
of length-L sequences or L-block entropy is defined by

H(XL) = −
∑

xL∈XL

p(xL) log p(xL), (1)

where the sum runs over all possible L-blocks. The entropy rate is defined by

hx = lim
L→∞

H(XL)
L

, (2)

and it can be written as hx = limL→∞ hx(L), where hx(L) = H(XL|XL−1 . . .X1)
is the entropy of a symbol conditioned on a block of L − 1 adjacent sym-
bols. The entropy rate of a sequence measures the average amount of infor-
mation per symbol x and the optimal achievement for any possible compression
algorithm [11].
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2.2 MI-Based Image Registration

The crucial point of image registration is the choice of a metric. The registration
between two images X and Y can be represented by an information channel X →
Y , where its marginal and joint probability distributions are obtained by simple
normalization of the corresponding intensity histograms of the overlap area of
both images [1]. The most successful automatic image registration methods are
based on the MI maximization. This method, almost simultaneously introduced
by Maes et al. [1] and Viola et al. [2], is based on the conjecture that the correct
registration corresponds to the maximum MI between the overlap areas of the
two images. Later, Studholme et al. [3] proposed a normalization of MI defined by

NMI(X, Y ) =
I(X, Y )
H(X, Y )

= 1 − H(X |Y ) + H(Y |X)
H(X, Y )

, (3)

which is more robust than MI, due to its greater independence of the overlap
area. The necessity of normalization is theoretically justified in [14]. It should
be noted that 1 − NMI is a true distance (see [14, 15]).

Standard MI-based measures ignore the spatial information contained in the
images. Recent research has been focused on overcoming this problem. Rueckert
et al. [6] propose to use a second-order MI to incorporate spatial information.
The neighbourhood has been defined by the six nearest neighbours of each pixel.
Pluim et al. [7] include spatial information by combining MI with a term based
on the image gradient of the images to be registered. The gradient term seeks
to align locations of high gradient magnitude and similar orientations of the
gradients at these locations. Sabuncu and Ramadge [8] include spatial informa-
tion in the MI-based approach by using spatial feature vectors obtained from
the images and use a minimum spanning tree algorithm to estimate the condi-
tional entropy in higher dimensions. Russakoff et al. [9] propose an MI extension
which takes neighbourhood regions of corresponding pixels into account. They
assume that the high-dimensional distribution is approximately normally dis-
tributed. Holden et al. [10] use the derivatives of gaussian scale space to provide
structural information in the form of a feature vector for each voxel.

3 Method

In this section, we define the high-dimensional normalized mutual information
and its computation using uniformly distributed random lines.

3.1 High-Dimensional Normalized Mutual Information

The L-dimensional normalized mutual information of an L-dimensional channel
XL → Y L is defined by

NMI(XL, Y L) =
I(XL, Y L)
H(XL, Y L)

=
H(XL) + H(Y L) − H(XL, Y L)

H(XL, Y L)
, (4)

where the joint entropy H(XL, Y L) is given by
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H(XL, Y L) = −
∑

xL∈XL,yL∈YL

p(xL, yL) log p(xL, yL), (5)

I(XL, Y L) is the L-dimensional mutual information, and p(xL, yL) is the joint
probability of the L-dimensional channel. Now, xL stands for an L-block of
intensity values in a given 3D region.

To compute the marginal and joint probabilities, how is xL selected?, i.e., how
is the neighbourhood ambiguity solved? With respect to this problem, different
templates have been proposed for two dimensions [12], but the generalization
from 1-block approach to L-block approaches is a difficult problem.

Another aspect to be considered is the size of an L-block. As L increases,
H(XL)

L decreases, converging to the entropy rate hx of an image, which expresses
its maximum compressibility or, equivalently, its irreducible randomness. In fact,
the entropy of an image appears more random than it actually is, and the dif-
ference is given by hx(L)−hx [12]. Therefore, the higher the L value, the better
the approximation of I(XL, Y L) to the true shared information. On the other
hand, note that the number of elements of the joint histogram is given by N2L,
where N is the number of bins of an image.

From these limitations, how to compute NMI(XL, Y L) for image registra-
tion? Rueckert et al. [6] propose a second-order MI using the six nearest neigh-
bours of each voxel and reducing the number of bins to 16. One drawback of this
approach is that not all directions are taken into account. In the next section,
we tackle this problem using uniformly distributed random lines.

3.2 Implementation Using Uniformly Distributed Random Lines

Uniformly distributed random lines, also called global lines [16], can be utilized
to compute the joint intensity histogram in 3D-image registration [17], which is
the most demanding step in the similarity measure computation. The overlap-
ping volume between two 3D-images is stochastically sampled using a uniform
distribution of lines in the sense of integral geometry, i.e., invariant to transla-
tions and rotations [18]. Points chosen on each line provide us with the intensity
values to calculate the probability distributions.

A global line can be generated from the walls of a convex bounding box
containing the data volume [19]. This can be done taking a random point on the
surface of the convex bounding box and a cosinus distributed random direction.
This strategy is easily applicable to image registration since the reference image
can be taken as the bounding box (Figure 1). The intensity values are captured
from the lines at evenly spaced positions, taking an initial random offset different
for each line. The random offset ranges from 0 to the step size. Although we skip
with regular steps, the use of a random offset ensures the stochasticity of the
process. This fact diminishes the interpolation artifacts (see [17]).

In order to implement the NMI(XL, Y L) measure, we propose to take L-
blocks on the global lines (Figure 1). Thus, the 3D-neighbourhood problem is
reduced to a 1D problem. Now, the ambiguity about how to sample the neigh-
bourhood disappears as the order in which we take the neighbours is well defined
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L3D modelthe 
intersectingline 

Regular Step

Initial Offset

Fig. 1. Global lines are cast from the walls of the bounding box. Neighbour intensity
values are taken in L-blocks.

on a global line. In spite of this, the dimensionality problem persists due to the
fact that the computation of the joint histogram of the channel XL → Y L

has an excessive cost if L ≥ 2. Another problem is the sparsity of the resulting
histograms since the number of bins of the joint histogram is N2L. A possible so-
lution to these problems is to reduce the number of bins of the image, preserving
a trade-off between level of binning and the accuracy of the entropy rate.

4 Results

In this section, two sets of experiments are carried out. First, we analyze the
behaviour of NMI(XL, Y L) when two neighbour intensity values are considered
on random lines and, second, we show preliminary results taking 3-blocks. The
clinical images and the standard transformations used for the tests are provided
as part of the Retrospective Image Registration Evaluation project [20].

The first experiments use the ITK MI Validation application [21] with a mul-
tiresolution optimization approach using the quaternion rigid transform gradient
descent. In our implementation, three multiresolution steps, with 1500 iterations
each one, are used. To reduce the computational cost, all the measures are com-
puted using global lines, with a total number of 100000 sampling points and an
step size of 2 mm. The NMI and NMI(X2, Y 2) have been computed, respec-
tively, over a range of 256 and 16 bins per dimension. The results of CT-MR T1
image registrations for 16 patients are shown in Table 1. Each entry in the table
is the mean of the distances in mm. between the evaluated registration method
and the gold standard measured at different volumes of interest (VOI) of the pa-
tient. Note that in 14 out of 16 tested patients the proposed approach behaves
better than the NMI method, and, in all the cases, the error of our method is
lower than 2.5 mm., which reveals its good performance. This good behaviour
is also shown in Table 2, where the mean, the median and the maximum of the
distances between VOIs have been computed from all patient results.

In Figure 2, we also present a preliminary evaluation of the proposed algo-
rithm with blocks of three neighbours. Our method is now used to register the
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Table 1. The mean of the error in mm. for NMI and NMI(X2, Y 2), measured at
different VOIs for each patient

CT-MR T1 NMI NMI(X2, Y 2) CT-MR T1 NMI NMI(X2, Y 2)
pat 001 2.05 0.97 pat 102 5.57 1.54
pat 002 1.98 1.28 pat 103 2.28 2.44
pat 003 1.78 1.10 pat 104 2.91 1.22
pat 004 13.16 2.21 pat 105 11.49 2.45
pat 005 1.63 0.84 pat 106 5.81 1.74
pat 006 12.62 1.44 pat 107 4.18 0.94
pat 007 0.78 1.13 pat 108 9.21 1.69
pat 101 6.57 2.10 pat 109 1.27 1.15

Table 2. Mean, median and maximum of the distances in mm. between VOIs from all
patient results

Method Mean Median Maximum
NMI 5.02 3.00 19.74

NMI(X2, Y 2) 1.50 1.31 2.92

(a)CT with marker (b)NMI(X,Y ) (c)NMI(X2, Y 2) (d)NMI(X3, Y 3)

Fig. 2. CT-MR registration results for different L values

CT-MR T1 pair of the patient 3 of the Vanderbilt database, considering differ-
ent L values. To overcome the high-dimensionality of the joint histogram, the
number of bins has been reduced to 16 bins and 8 bins for L = 2 and L = 3,
respectively. In Figure 2, we show the original CT with a rectangular marker and
the transformed MR obtained with L=1, L=2 and L=3 and with the marker in
the same geometrical position as in the CT image. In the second row of Figure 2
we show a zoom of the first row images. In this test, the correctness of the reg-
istration for each case is determined by the degree of coincidence between the
white dot in the center of the marker of the CT image and the black dot in the
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MR one. Observe that, for NMI(X2, Y 2) and NMI(X3, Y 3), the registration
achieves more accurate results than the standard method NMI. This behaviour
encourages us to explore the proposed measure with higher L values.

5 Conclusions and Future Work

In recent years, mutual information and its normalized versions have emerged
as effective similarity measures for image registration. However, one significant
drawback is that they ignore structural information in images. In this paper, we
have presented the high-dimensional normalized mutual information which takes
into account the dependence between image regions. The high dimensionality of
the problem has been tackled using uniformly distributed random lines and re-
ducing the number of image bins. Random lines permit us to solve the ambiguity
in taking the neighbour intensity values of a voxel and also contributes to the
reduction of interpolation artifacts. Experimental results show that an accurate
and robust registration is achieved using only two neighbour intensity values
in the normalized mutual information computation. In our future work we will
analyze the behaviour of our proposal using three or four neighbours combined
with a previous non-uniform quantization of the images.
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Abstract. Recently, it is shown the morphology of the white matter,
obtained by ultrasound (US) imaging, has prognostic implications for
certain brain pathologies. Periventricular Leukomalacia (PVL) is such a
pathology diagnosed on infants with a very low birth weight (< 1500g).
Next to the US images Magnetic Resonance Image (MRI) volumes are
commonly used for the inspection of this pathology. Since on both modal-
ities, up to now, we still lack a golden standard for the quantification
of the syndrome cross-validation through a multi-modal registration is
highly beneficial to the clinical diagnosis. In this article we present a 2D
US - 3D MRI registration scheme combining an interactive initialization
step, B-spline image interpolation, a mutual information based metric
and an evolutionary algorithm optimization scheme.

1 Introduction

1.2 % of the newborns are Very Low Birth Weight (VLBW) infants (≤ 1500g).
The recent increase in survival rate of these VLBW infants has brought along
an increasing incidence of neurological sequelae [1]. Here we will focus on one
particular brain pathology, called Periventricular Leukomalacia (PVL), which
in its milder variant is characterized by deep white matter lesions, also called
flaring, adjacent to the lateral ventricles, see Fig. 1. This is the primary indication
of further abnormal brain development. Among the survivors of the neonatal
period, 50 % is normal at the age of 6, 10-20 % suffer from severe handicaps.

In previous work [1, 2] PVL has already been studied on MRI volumes as well
on newborns as on the outcome on later stages. Other work [3, 4] already showed
the possibility of detecting PVL based on US images. The non-invasiveness and
portability of the US machine make this modality highly suitable given the
nature of the patients. On the other hand, due to the speckle noise present, the
visual inspection of the images is often subjective.

Although MRI volumes are less noisy, they are harder to capture when deal-
ing with non-sedated preterms. Next to that, we still lack a golden standard
for the quantification of the flaring both in US as well as in MRI. Therefore,
physicians nowadays believe valuable information can be obtained from the si-
multaneous inspection of the US and the corresponding MR image. In order to
obtain this objective image comparison, the images should contain exactly the
same anatomical features and thus have to be registered correctly.

In literature, many 3D/3D registration algorithms have been presented for
different modalities, also including US. The 2D/3D case is often less trivial given

J.P.W. Pluim, B. Likar, and F.A. Gerritsen (Eds.): WBIR 2006, LNCS 4057, pp. 272–279, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. On the left a normal brain and part of the periventricular zone below it. In the
middle, a cystyc PVL brain and below it a clear cut-out of the cysts in the tissue that
come with the severe variant of the pathology. On the right, the gliotic PVL with the
flaring delineated and below a cut-out of the periventricular flaring.

there is less information available for the same number of degrees of freedom.
Next to that, 2D/3D schemes are commonly found for CT, PET, MRI modalities,
but the typical speckle noise in the US images makes it hard to create this kind
of registration scheme, although there is a clear demand for it. Here we will try
to fill the gap by presenting an interactive registration scheme, to our knowledge
the first on neonatal US brain imaging.

In the next sections we will first explain the data used Section 2, then present
our registration scheme, Section 3, show some experimental results in Section 4,
before presenting our conclusions in Section 5.

2 Data Acquisition and Preprocessing

A total of 20 coronal 2D-US brain images obtained from 20 preterms up to 32
weeks of gestation were analyzed. All images were captured in the first 3 weeks
after birth at the Sophia Children’s hospital Rotterdam, The Netherlands, by
one medical expert using an Acuson Sequoia 512 ultrasound machine with a
hand-free 8.5 MHz probe. The US image pixel size is 0.16 × 0.16 mm. Conse-
quently, 20 MRI volumes of the same patients were acquired using a General
Electric 1.5T Sigma Infinity scanner. A T1 weighted volume containing about
85 images at a voxel size of 0.85 × 0.85 × 1 mm and T2 weighted volume con-
taining about 20 images at a voxel size of 0.70 × 0.70 × 4 mm were used in the
registration process. The acquisition time for the MRI images lay between 4 and
5 minutes.

Given the conical shape of the US image there is a lot of information on
the image at display that is redundant to the registration procedure. Therefore,
instead of working on the raw US images we first cut out all superficial informa-
tion, being all black background not part of the brain as well as all parts outside
of the skull, where the US beams do not penetrate.
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Consequently, we incorporate the scan angle of the ultrasound image. Although
in this experiment the US images were acquired without any probe tracker, the
medical expert scans under a 45 degree angle to the coronal plane. Thus, in rotat-
ing the MRI volume over the same angle we obtain a better starting position.

3 Registration Scheme

3.1 Mechanism

Fig. 2 illustrates our registration scheme, apart from the previously explained
initialization steps. We will briefly discuss this scheme before going into detail
on the most important parts. First, we have to decide on which image will be
fixed in a space coordinate system, and which one will be transformed result-
ing each time in a new overlap. We choose the 2D-US image as fixed, the MRI

Fig. 2. Schematic overview of the registration

volume as moving. For each possible overlap, an interpolator calculates the values
of the moving image at the grid positions of the fixed image. On this overlap, we
calculate a metric value, which is an adequate indicator for the similarity between
the current overlapping (MR) slice and the fixed (US) image. Based on this metric
value, an optimizer then proposes new transform parameters. Before we can eval-
uate this new candidate solution, the interpolator once again finds the intensities
of the moving image at the grid positions of the fixed image. This cycle is repeated
until the optimal transform is found or a stopping criterium is reached.

More technically, suppose u is our reference image and v our test volume, and
u(x) and v(x) are the corresponding pixels or voxels. Denote by T a transformation
of the coordinate system of the reference image to that of the test volume and by
Fc a function that reaches a maximum when the registration is correct. Then the
registration goal is to find the optimal estimate transformation Tc, so that

Tc = arg max
T

Fc(u(x), v(T (x))). (1)

3.2 Transform

Since we include 3D volumes, we consider 6 degrees of freedom, allowing trans-
lations and rotations around the three principal axes. The head is considered
a rigid object so scaling is not applied. The transform is centered, meaning
the center of rotation can be chosen arbitrary other than in an origin based
implementation. A natural choice is the center of the head, which leads to an
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easier interpretation of and a reduced dependency on the transform parameters.
If for example all parameters are set to their optimal values, varying one rotation
angle will result in the volume rotating, while still remaining in an overlapping
position with the US image. A similar movement with a not-centered transform
would require changes in all 6 transform parameters. In Fig. 3, a 2-dimensional
example is given, illustrating both types of transforms.

Fig. 3. On the left a rotation around a center, on the right a rotation around the origin

3.3 Interpolator

The scan time for the MRI volumes has to be limited and we are restricted to
work by the protocols put forward by the medical doctors. This implies a non-
neglectable difference between the resolution of both modalities. For example, the
US images used have a resolution of 0.16× 0.16 mm while the T2 weighted MRI
volume has a resolution of 0.7×0.7×4 mm. Hence we interpolate the MRI volume,
to assure acceptable registration results. As interpolating is computationally
expensive, it is essential to use a time-efficient algorithm. For this reason a
simple linear interpolation is performed in each iteration of the scheme.

For some volumes however, as the T2 weighted volume, it is necessary to
perform a more complex interpolation before the actual registration precedure
starts, since just applying a linear interpolation would result in images of poor
quality. That is why the MRI volume is first upsampled using B-splines of degree
5. In order not to increase the memory usage exponentially, we created isotropic
voxels of size 0.5mm in that way. Fig. 4, shows an example of an interpolation
using B-splines.

3.4 Metric

This component is undoubtedly the most critical. The metric value is the result
of a mathematical measure, based on the values of the group of pixels relevant
for the current solution and reflects the quality of this solution. Since we are
working with different modalities, we can not just compare the intensities of
corresponding pixels the two images.

Here we used an implementation of the Mutual Information algorithm pro-
vided by Mattes et al. [6] which is computationally more interesting than the
one proposed by Viola et al. [5]. For more details we refer to the reference paper,
but mainly only one sample set is used throughout the entire run of the program



276 E. Vansteenkiste, J. Vandemeulebroucke, and W. Philips

Fig. 4. On the left the original MR image (z-direction), on the right the B-spline
interpolated MR image

and B-splines, having a finite support, instead of Gaussian kernels are used in
order to estimate the probability density functions (PDF). For the calculation of
the entropy, no second sample set is needed but the estimated PDF’s, uniformly
distributed over the intensity interval, are evaluated. The advantage of this met-
ric is that it uses only 2 parameters: the number of samples used to estimate the
PDF, and the number of histogram bins used to calculate the entropy.

3.5 Optimizer

The optimizer finds the optimal transformation parameters. It searches the 6-
dimensional space to efficiently zoom in on the optimal solution, while not get-
ting caught in local extrema of the metric. A (1 + 1)-evolutionary strategy was
implemented, which has proven to be more robust and effective in this kind of
environment.

The strategy starts from a set op possible initial solution and combines them
in a specific way as to obtain new generations of solutions. Suppose we obtain a
solution xt, at iteration t. A new solution xt+1 is then generated, satisfying:

xt+1 = xt + atrt

where rt is a normally distributed random variable:

rt ∼ N(0, 1)

and at satisfies:

at =
{

at−1cgrow if F (xt) > F (xt−1)
at−1cshrink else.

Note that here we assume a higher value F (x) corresponds to a better solution.
The parameters a0, xt, cgrow, cshrink are set priorly. Here, x0 is an initialization
of T , the value of cgrow en cshrink are set according to [7], and are close to 1. The
algorithm stops when a prefined maximum number of generations is reached or
if at is smaller then a prefined threshold ε.

Intuitively, we impose normal variations on a solution at a certain stage scaled
by a factor at. If we find a better solution than the current one we increase this
factor, thus supposing even better solutions may lay even further away, improving
the exploration of the search space.
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If no better solution is found we decrease this factor, thus supposing a better
solution can be found through the exploitation of the local neighborhood. The
small number of floating point operations makes the algorithm very fast and
allows us to generate many generations without enlarging the computation time
significantly. Another advantage of these optimizations is their relative insensi-
tivity to local optima in the metric, allowing the technique to perform well in
noisy environments, such as the US images.

The major drawback is that the solution is not always unique and so multiple
runs have to be taken into account to base the final result on. As mentioned
above the low computational complexity makes this possible.

4 Experimental Results

Fig. 5 shows the visual results of the registration of 2 different patients. The
mosaic images are shown as well as the corresponding US and MR image. The
left images are based on the T1 weighted volume, the right on the T2 weighted
volume. All results were obtained using the same protocol. First, the appropriate
US region of interest was selected, then the MRI volumes were interpolated using
the B-splines, rotated of a 45 degrees angle and an initial starting slide was
chosen. As such transform was initialized as

Ti = (−0.8, 0, 0, 0,
tz√
2
,

tz√
2
)

with tz the z-coordinate of the initial slide, first 3 coordinates presenting the
rotation (in radials), last three the translation.

Instead of using an initial random solution for the evolutionary algorithm,
a Regular Step Gradient Descent method combined with the Mattes mutual
information was run on Ti, leading to the initial starting point for the scheme
presented earlier. This was found more stable than any arbitrary selection. The

Fig. 5. Registration results for 2 different patients, on the left a T1 weighted image,
on the right a T2 weighted image
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registration procedure was then run 15 times and the optimal registration result
was selected based on the results of the metric, next to the visual evaluation
of the results. The optimal translation parameters for the two patients can be
found in the Table below.

Translation rx ry rz tx ty tz
P1initial -0.8 0 0 0 11.3 11.3
P1final -0.816 -0.00772 -0.00493 -0.340 10.6 11.8
P2initial -0.8 0 0 0 -16 -16
P2final -0.639 -0.0347 0.0505 2.71 -12.4 -16.8

Optimal results differed 0.1 mm in translation and 0.01 radials in rotation
compared to the manual registration of a medical expert, which is very good
given the very small size of the head. We should mention however that solely
based on the results of the metric, the rotational variance might be bigger.
Therefore, a visual inspection of the best outcomes is indeed necessary. Note
also that the final results often are rather close to the initializations so a good
initialization is very important. Given the spline interpolation and multiple runs
of the genetic optimizer the whole process also takes quite some computation
time, up to 3 hours momently. This we are currently trying to optimize.

When looking at the visual results, also see Fig. 6, we see the outer structures
of the brain are usually registered well, there were for the inner parts it is less
obvious. This can be explained by the fact that some features such as the Plexus
Chorideus, an anatomical region inside of the lateral ventricles, are displayed
differently due the intrinsic properties of the different modalities. This makes
the US registration very hard and calls for a visual interpretation of the results
as mentioned above.

Fig. 6. Registered MR and US image. The Plexus Chorideus is the bright white spot at
the bottom of each central ventricle. Notice is has, amongst other features, a different
appearence on the MR and US image.
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Finally no real difference was found in the registration results for the T1
and T2 weighted images, altough the T1 images tend to show more detailed
information, making them more suitable for visual diagnosis.

5 Conclusions

We constructed a 2D US - 3D MRI registration method with limited user-
interaction. The program automatically places both images in the space coordi-
nate system, after upsampling the MRI volume. The user then roughly initializes
the transform, after which an evolutionary strategy optimizes a mutual infor-
mation based metric. Visual results, as shown in Fig. 5, are satisfying and have
been validated by the clinical experts.

As a continuation of our work we would like to test how a feature-based
metric could even further improve the registration process as well as possible
speckle suppression as a preprocessing to the registration algorithm. Based on
this registration, first steps are also taken in order to cross-validate the specific
segmentation and classification results found on both modalities separately.
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Abstract. This paper exploits the different properties between the local
neighborhood of global optimum and those of local optima in image reg-
istration optimization. Namely, a global optimum has a larger capture
neighborhood, in which from any location a monotonic path exists to
reach this optimum, than any other local optima. With these properties,
we propose a simple and computationally efficient technique using trans-
formation disturbance to assist an optimization algorithm to avoid local
optima, and hence to achieve a robust optimization. We demonstrate
our method on 3D rigid registrations by using mutual information as
similarity measure, and we adopt quaternions to represent rotations for
the purpose of the unique and order-independent expression. Random-
ized registration experiments on four clinical CT and MR-T1 datasets
show that the proposed method consistently gives much higher success
rates than the conventional multi-resolution mutual information based
method. The accuracy of our method is also high.

1 Introduction

An important component in the medical imaging field is multi-modal image reg-
istration, which can integrate complementary image information acquired from
different modalities. The task of image registration is to reliably identify a geo-
metric transformation to accurately align two images. General promising results
have shown that mutual information (MI) as a voxel intensity-based similar-
ity measure is well-suited for multi-modal image registration [8, 14]. However, it
has been suggested that the conventional mutual information based registration
method can result in misalignment for some cases [9, 11]. One possible causation
is that the mutual information based method can get trapped into local maxima
during transformation optimization process. Most of the existed optimization
methods, e.g. Powell’s method, simplex methods, gradient descent and so on
[12], are only suitable for local optimization. Several attempts have been made
to improve the optimization performance, such as multi-resolution approaches
[2], extension and combination of different optimization methods [10, 5]. However
there is still no guarantee to find the global solution in general. On the other
hand, global stochastic optimization methods, e.g. Simulated Annealing [4], need

J.P.W. Pluim, B. Likar, and F.A. Gerritsen (Eds.): WBIR 2006, LNCS 4057, pp. 280–288, 2006.
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to take a large number of iterations to converge, which limit their application in
image registration.

In this paper, in an attempt to obtain a robust optimization result, a simple
and computationally efficient technique is proposed to assist an optimization
method to avoid local optima. The technique is based on the different properties
between the local neighborhood of global optimum and those of local optima.
Specifically, the global optimum has a larger capture neighborhood, in which from
any location a monotonic path exists to reach this optimum, than any other local
optima. When an optimization procedure gets trapped into a local optimum, a
proper disturbance on the obtained transformation can pull it out of the un-
desirable location and consequently provide a further chance for a following up
optimization to achieve the global optimum. The proposed method is demon-
strated on 3D rigid registrations. We adopt quaternions to represent rotations
for the purpose of the unique and order-independent expression. Based on the
randomized registration experiments on four clinical 3D CT and MR-T1 image
volumes, it is demonstrated that the new method consistently gives much higher
successful registration rates than the conventional multi-resolution mutual in-
formation based method. The results also implies that our method can obtain
acceptably high registration accuracy.

2 Methods

2.1 Mutual Information as Similarity Measure

Mutual information (MI) is an useful concept from information theory [3] and
measures the amount of information shared between two random variables.
Specifically, mutual information quantifies the Kullback-Leibler distance [7] be-
tween the joint distribution of two random variables, A and B, and the product
of their marginal distributions, that is

MI(A, B) =
∑
a,b

p(a, b) log
p(a, b)

p(a) · p(b)
, (1)

where p(a, b) is the joint distribution of A and B, and p(a) and p(b) are the
individual marginal distributions respectively.

Mutual information was proposed independently as similarity measure for
3D rigid registration of medical images by Wells et al. [14] and Maes et al. [8].
To utilize mutual information, the intensity values of the corresponding voxel
pair in the two images to be registered are considered as random variables,
and the joint and marginal distributions can be the normalization of the joint
and marginal histograms of the sampling set. The mutual information of two
images measures the amount of information conveyed by one image that is shared
by the other image, and it is assumed to be maximum when the images are
aligned. Therefore, the mutual information based registration method identifies
a geometrical transformation T̂ as follows,

T̂ = arg max
T

MI(T) = argmax
T

MI(T(If ), Ir),
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where Ir and If are the intensity domains for the reference and floating images
respectively.

2.2 Robust Optimization Using Transformation Disturbance

General promising results have shown that the mutual information based regis-
tration method works well on multi-modal images [8, 14]. However, it has been
suggested that it can result in misalignment for some cases [9, 11]. One possible
causation is that mutual information based method can get trapped into local
maxima during transformation optimization process. This motivates us to pro-
pose a technique to assist an optimization method to avoid those local maxima.

From any initial transformation T0, it is obvious that there exists a mono-
tonic path,

−−−−−−−−→
T0T1 · · ·Tl, to a local (or global) maximum Tl, such that MI(T0) ≤

MI(T1) ≤ · · · ≤ MI(Tl). Then, the capture neighborhood of an arbitrary local
(or global) maximum Tli , NTli

, can be defined as a maximum local neighbor-
hood in which any transformation has such a monotonic path to reach Tli .
Alternatively, NTli

can be expressed as follows,

NTli
= {T | ∃ −−−−−→

T · · ·Tli , such that MI(T) ≤ · · · ≤ MI(Tli)},

and its radius is given by

RTli
= max

T∈NTli

d(T,Tli ),

with d(·) being the distance of two locations. With this definition, the whole
transformation space can be treated as the union of all such capture neighbor-
hoods, i.e.

⋃
i NTli

.
The foundation of the proposed method is an observation that the radius of

the capture neighborhood of an arbitrary local maximum Tli is much smaller
than that of the global maximum To, i.e. RTli

� RTo , ∀ Tli �= To. Thus, if
an optimization procedure gets trapped into Tli �= To, a relatively small offset
added on the obtained transformation can pull it out of NTli

, and then a further
chance for a following up optimization to converge to To is given. On the other
hand, when an optimization procedure achieves To, the same offset will not pull
it out of NTo , and thus a following up optimization process still achieves To.
Practically, when an optimization procedure converges, in order to pull it out
of NTli

(Tli �= To), or to validate whether it reaches To or not, we propose to
randomly add an reasonable disturbance (e.g. larger than RTli

and much less
than RTo) on the obtained transformation and resume the optimization process.
(For the determination of the range of disturbance, please refer to Section 3.)
As a consequence, the potentiality of obtaining a robust optimization result
increases. This process iterates until the change of obtained transformations at
two successive iterations becomes sufficiently small.

2.3 Rotation Representation

The technique proposed in Section 2.2 is demonstrated on 3D rigid registration.
We use quaternion algebra to represent 3D rotations in rigid transformations.
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This is because any rotation can be uniquely represented by quaternion as a
complex number:

q = a + ib + jc + kd

= cos(
α

2
) + i(x sin(

α

2
)) + j(y sin(

α

2
)) + k(z sin(

α

2
)), (2)

where (x, y, z)T is an unit vector representing the axis of rotation, α is the
angle of rotation. Note that other rotation representations may have ambiguity
in some cases, e.g. Euler angle representation has ambiguity when the attitude
(or elevation) is equal to ±π

2 . Moreover, quaternion has another advantage of
encoding rotation in an order-independent manner.

In addition, in Equation 2, we have a2 + b2 + c2 +d2 = 1. In order to decrease
the degree of freedom of quaternion for optimization, Equation 2 is revised as
follows,

q = 1 + ib̃ + jc̃ + kd̃ = 1 + i
b

a
+ j

c

a
+ k

d

a

= 1 + i(x tan(
α

2
)) + j(y tan(

α

2
)) + k(z tan(

α

2
)).

Furthermore, during optimizations of brain image registrations, large rota-
tions from optimal position, e.g. ≥ π

2 and ≤ −π
2 , are fatal and most likely

to invert brains in floating images. To avoid this, a hard constraint, namely
b̃2 + c̃2 + d̃2 < 1, may be added to limit the search space of rotation angle to
α ∈ (−π

2 , π
2 ).

3 Implementation Details

In our implementation, in order to accelerate the registration process, a multi-
resolution approach based on the Gaussian Pyramid representation [1, 14, 2] is
exploited. Four resolution levels are used and the definition of resolution levels in
the Gaussian Pyramid representation follows the same convention as in [1], i.e.
Level 0 image represents the highest and original resolution and Level 3 image
represents the lowest resolution. Smoothing is performed via the binomial filter
with coefficients [1, 4, 6, 4, 1] [14]. For the ease of implementation, all voxels in
the downsampled floating volumes are used at Levels 1 – 3. At Level 0, 1/4
(25%) of all voxels are sampled (one voxel randomly picked from every 2 × 2
matrix in each slice). To construct the joint and marginal histograms, the image
intensity values are linearly scaled to 64 bins, which have been commonly used in
the mutual information based registrations. For optimization at each resolution,
we use the Powell’s direction set method [12] with Brent’s 1D line minimization,
where the fractional precision convergence parameters are set to 10−4 and 10−3

respectively.
The transformation disturbance across progressive optimizations as discussed

in Section 2.2 is only performed at Level 3 for reasons of speed, since the com-
putational burden at higher levels can be more significant. On the other hand,
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it is empirically observed that, although from large initial misalignments, the
majority of optimization results can converge close to the ground truth at Level
3, with the help of transformation disturbance. (Please refer to Section 4.2 for
details.) For an optimization at Level 3, a disturbance, which consists of 3 dis-
turbances for translational parameters and 3 disturbances for quaternion param-
eters, is randomly generated based on Gaussian distributions with zero means.
To determine the standard deviations of these Gaussian distributions, a set of
experiments with different standard deviation values have been performed. Em-
pirical results suggest that a relative high success rate is given by the following
set of standard deviation values: for translation, they are equal to 1/16 of image
dimension sizes (in millimeter), and for quaternion, they are equal to tan(π/16).
The convergence criterion is that, at two successive iterations, the change of
obtained transformations for an individual degree of freedom is less than 1/5 of
the corresponding standard deviation.

4 Experimental Results

4.1 Image Datasets and Ground Truth

In the experiments described below, we used a set of real CT – T1 data ob-
tained from the Retrospective Image Registration Evaluation (RIRE) project1.
Note that all the T1 images have been rectified for intensity inhomogeneity and
scaling. In general, the size of a CT image volume is 512 × 512 × 34 voxels and
the voxel size is 0.65 × 0.65 × 4mm3, and a T1 image contains 256 × 256 × 26
voxels of dimensions 1.25 × 1.25 × 4mm3.

With regard to the data, we determined the “ground truth” for registration
experiments as follows. First, the multi-resolution mutual information based and
normalized mutual information (NMI) [13] based methods were used to register
the image pairs. The evaluations of accuracy were obtained from the RIRE
project. By examining the median errors, four datasets (Datasets pt-001, pt-
003, pt-005 and pt-007) with less than 1mm registration error were selected and
used in the experiments. Then the corresponding optimal transformations, whose
median errors were 0.5077 (for pt-001), 0.7200 (for pt-003), 0.7807 (for pt-005)
and 0.6179 (for pt-007) respectively, were used as the ground truth registrations.

4.2 Justification and Determination of Disturbance

In order to justify the capability of the proposed transformation disturbance on
helping optimization to avoid local maxima, especially at Level 3, randomized ex-
periments were performed for the mutual information based registration method
with disturbance and quaternion (hereafter referred to as MI-d), and also for the
conventional mutual information based registration method (hereafter referred

1 Images were provided as part of the project, “Evaluation of Retrospective Image Reg-
istration”, National Institutes of Health, Project Number 8R01EB002124-03, Prin-
ciple Investigator, J. Michael Fitzpatrick, Vanderbilt University, Nashville, TN.
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to as MI) as a comparison. The testing image pair was the aforementioned pt-
001 CT – T1 dataset and the experiment for either method took 100 trials. At
each trial, the ground truth registration parameters of pt-001 were perturbed
by six uniformly distributed random offsets for all translational and rotational
axes. The perturbed parameters were then treated as the starting alignment. In
order to show the high optimization capability of MI-d with respect to initial
alignment, random offsets for X and Y translational axes were drawn between
around [-150, 150]mm and those for Z translational axis were drawn between
around [-70, 70]mm. (Note that these ranges were set so that two brains in CT
and T1 images have at least 10% overlapping region.) While, random offsets
for each rotational axis were respectively drawn between [-0.52, 0.52] radians,
i.e. [-30, 30] degrees. (The perturbed rotations were first converted to quater-
nions prior to MI-d.) As a fair comparison, the same set of randomized starting
alignments was used for MI and MI-d.

In addition, as mentioned in Section 3, in order to determine a suitable
setting for generating random disturbances, we have tested several different
sets of standard deviation values for the Gaussian distributions: 1/n of image
dimension sizes (in millimeter) for translation, and tan(π/n) for quaternion,
n ∈ {8, 16, 32, 64}. Then, we selected the one set, which produced the most
successful results, for further experiments. Since the registrations were only per-
formed to the downsampled image pair at Level 3, an optimization result was
judged to be successful when the individual translational errors w.r.t. the ground
truth were less than 10mm and the individual rotational errors (measured by
Euler angles) were less than 5◦. Such thresholds were selected because, based
on our empirical experiences, a starting alignment within them definitely can be
fine-tuned to converge to the ground truth.

Table 1 presents the number of successful optimization results for MI and MI-
d with different sets of standard deviations (i.e. MI-d-8, MI-d-16, MI-d-32, MI-
d-64) on pt-001 dataset at Level 3. In the ”# Success” column, it is suggested
that, as compared with MI, MI-d with different sets of standard deviations can
give much more successful optimization results at Level 3. It is also noted that,
amongst the four different sets, MI-d-16 has the best performance and thus we
determine to adopt it for further experiments. The average running time at each
trail for each method is also listed in the table. Obviously, all MI-d methods take

Table 1. The number of successful optimization results and the average processing
time (in seconds) of MI, MI-d with different sets of standard deviations on pt-001 CT
– T1 dataset at Level 3

# success Time (sec)
MI 47 28

MI-d-8 90 227
MI-d-16 96 193
MI-d-32 83 311
MI-d-64 81 321
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relatively longer time to converge than MI. However, as we do not perform trans-
formation disturbance at higher levels (i.e. Levels 0 – 2), where the computational
burden of conventional MI is already significant, the difference between the overall
processing time of MI-d and MI will be much less than that at Level 3.

4.3 Performance Comparisons on Robustness and Accuracy

In this section, we further study and compare the registration performance (w.r.t.
robustness and accuracy) of MI-d-16 and MI. A series of similar randomized
experiments as described in Section 4.2 was performed on the aforementioned
four clinical CT – T1 image pairs (i.e. pt-001, pt-003, pt-005 and pt-007) with all
four resolution levels. Therefore, for either method, an experiment with 100 trials
was performed on each dataset with a set of randomized starting alignments
generated as described in Section 4.2.

To evaluate each derived registration with respect to the corresponding ground
truth registration, similar to [8, 6], a tight bounding box was fitted around the
brain for each T1 images. For each of the eight corner points, the Euclidean
distance between the ground truth position and the position transformed by our
solution was computed. The median value of the eight distances was then taken
for assessing registration success. A registration was judged to be successful
if the median error was smaller than or equal to 4mm, which was the largest
voxel dimension of the CT – T1 image pair; otherwise, it was considered a
misregistration.

Table 2 lists the success rates for MI and MI-d-16 for all testing image pairs
(pt-001, pt-003, pt-005 and pt-007), together with the means and standard de-
viations of the median errors (in millimeters) for the successful registrations. It
is shown in the table that MI-d-16 consistently gives much higher success rates
as compared with MI. For registration accuracy, it is observed that the median
errors of the successful registrations for MI-d-16 are comparable to those for MI,
and are acceptably low.

Table 2. The success rates of MI and MI-d-16, and the means and standard deviations
of the median errors (in millimeters) for different testing image pairs

MI MI-d-16
success% mean ± sd success% mean ± sd

pt-001 51% 0.5295 ± 0.0459 96% 0.5438 ± 0.0530
pt-003 45% 0.1983 ± 0.1103 99% 0.2134 ± 0.2854
pt-005 40% 0.5182 ± 0.7830 93% 0.3959 ± 0.6452
pt-007 44% 1.6842 ± 0.4790 92% 1.6959 ± 0.4138

5 Conclusion and Discussion

To conclude, this paper has proposed a simple and computationally efficient
technique based on transformation disturbance to assist an optimization method
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to avoid local optima, and hence to achieve a robust optimization result. The
new technique has been demonstrated on 3D rigid registrations, and quaternions
have been adopted to represent rotations for the purpose of the unique and order-
independent expression. Randomized registration experiments on four clinical
CT and MR-T1 datasets have revealed that the success rates of our method are
consistently much higher than those of the conventional multi-resolution mutual
information based method. It has been also shown that the registration accuracy
of the new method is acceptably high.

Finally, we would like to note that there is no practical guarantee for our
method to achieve global maximum. However, empirical observations have shown
that the optimization performance of our method is much better than the con-
ventional multi-resolution approach. A theoretical justification of the work is
desirable and remains a topic for future research. Furthermore, although the
illustration and demonstration in this paper just concentrate on mutual infor-
mation as similarity measure and the Powell’s optimization method, the pro-
posed technique is quite general and can be applied to other similarity measures
(e.g. normalized mutual information and so on) and optimization methods (e.g.
simplex methods and so on).
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Abstract. MR – CT image registration has been used in the liver cancer treat-
ment with an open MR Scanner to guide percutaneous puncture for ablation of 
tumors. Due to low magnetic field and limited acquisition time, MR images do 
not always show the target clearly. Sometimes, assistance of CT images is help-
ful for the navigation to the target. The shape of the liver within the surgical 
procedure is different from that of preoperative CT images due to the patient 
position for the convenience of surgery. It is quite difficult to match the images 
accuracy during surgery. In this paper, we have proposed a method to improve 
the registration accuracy of images with an open MR scanner and preoperative 
CT images of the liver. The method includes three parts. Firstly a semiauto-
matic method is used to extract the liver from MR and CT images as region of 
interest (ROI). Then, an affine registration is used to match the images roughly. 
Finally, BSpline-based nonrigid registration is applied. The results are found to 
be satisfactory with visual inspection by experts and with evaluation by the dis-
tance of two liver surfaces, while comparing with other methods. 

1   Introduction 

Recently, various minimally invasive treatments have been widely spread for the treat-
ment of liver tumors.  For the image guidance, ultrasonography has been mainly used. 
With developments of open configuration MR scanners, MR images have also been 
utilized for the navigation of minimally invasive therapies, because MR images have 
many advantages for image navigation, such as good soft tissue contrast, free from 
ionizing radiation and multiplanar capabilities. Microwave ablation, an established 
procedure for the treatment of liver tumors, has been successfully combined with MR 
image guidance [1]. At the initial stage of surgery, only real-time MR image, which is 
continuously acquired with gradient echo sequence within 2 seconds, is used for image 
guidance. The image planes including the path of the needle are interactively controlled 
by surgeons using an optical tracking system. The contrast of real-time MR images 
acquired within 2 seconds is not always satisfactory. The cases, in which real-time MR 
images can show the target clearly, are selected for this treatment. As the second stage, 
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navigation software on an external computer is used in combination with real-time MR 
images [2, 3]. After the patient position for the treatment is fixed, multi-slice MR im-
ages are acquired and transferred to the software as 3D volume data. Real-time MR 
images in the corresponding planes are simultaneously displayed on the surgeon’s 
monitor. Multi-slice MR images just before the treatment are much better in the image 
quality than real-time MR images. In addition, the tumor region is manually traced and 
shown with color on the display. The assistance of this software is quite useful and 
remarkably expands the indication of this treatment. In some cases with severe chirrho-
sis, however, visualization of the tumor is still difficult with MR images acquired by the 
open configuration MR system. In such cases, the combination of preoperative CT im-
ages will be greatly helpful, if CT images can be registered to the position of MR 
images accurately.  

Liver image registration goes back to 1983 [4], but most works on liver registration 
are done in recent years [5]-[9]. Only one paper is found about MR liver image regis-
tration with open MR system [9]. In this paper, intensity-based and rigid transform 
registration is used.  There are no previous reports of liver registration using intensity-
based nonrigid registration. Since nonrigid registration can deform an image, it is 
possible to get better result than that of rigid registration. 

In this paper, we have developed a non-rigid registration method to match MR and 
CT images in the liver tumor treatment with open MR system. Since CT images are 
acquired before surgery, we have enough time to carefully segment it by manual and 
obtain accuracy CT images of the liver. When multi-slice MR images are acquired 
during surgery, deformable model is adopted first to roughly segment the images, and 
then the roughly segmented images are trimmed manually. After segmentation, the 
intensity-based affine registration is applied to both segmented images, and then 
BSpline-based nonrigid registration is applied. Both registrations use mutual informa-
tion (MI) as similarity metrics since MI have been proven robust in the multi-model 
image registration [10]. The registration accuracy is accessed by the visual inspection 
and the distance of two liver surfaces. Compared with the Andres’ method [9], the 
results are satisfied. 

2   Method 

2.1   Liver Segmentation of MR Images 

Since the intensity of liver and other tissues in abdomen is similar in the MR im-
ages, segmentation of the liver is difficult.  Both consideration of speed and accu-
racy, we combine the automatic and the manual method to segment the liver. 
Firstly, we adopt automatic segment to segment liver roughly and remove the most 
non-liver part, such as wall of abdomen, spine etc, and then manually segment liver 
organ with a little effort. We adopt the deformable surface model to segment liver 
due to its robust and fast. The liver surface and soft tissue are modeled by a surface 
tessellation using connect triangles. The initial model is a tessellated sphere, which 
is put at the center of the image. Each vertex of the sphere surface is updated 
to approach the liver or soft tissue surface. When the vertex of the sphere surface 
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approaches the liver or soft tissue surface enough, the updating is stopped. Detailed 
can be found in refs. [11][12]. 

2.2   Affine Registration 

Mutual information is the most robust similarity metrics for the multimodal image 
registration and is widely used [13][14]. Therefore, we select it to match the two 
liver images. We use affine registration firstly to match two images roughly. The 
affine transformation is  { }zxyzxyzyxzyxzyx sssrrrtttT γγγ ,,,,,,,,,,,= , where zyx ttt ,,  

are translations along the yx, ,and z  axes respectively, zyx rrr ,,  are rotations 

about the yx, ,and z  axes respectively, zyx sss ,,  are scales about the yx, ,and z  

axes respectively, and zxyzxy γγγ ,,  are shears about zyyx −− ,  and xz −  plane 

respectively. 
The initial translations are determined by the centers of mass of the two segmented 

livers, the initial scales are set to one, and the initial rotations and shears are set to 
zero. The Powell optimization [15] is used to obtain these optimal parameters. 

2.3   BSpline-Based Nonrigid Registration 

BSpline-based free form deformation (FFD), which is firstly proposed [16] to process 
breast images, is used to deform the CT image.  The shape of image space can be 
controlled by changing the control grids of the BSpline, and the transform is Cn-1 
smooth continuous, where n is the order of BSpline basis function. Usually the C2 
continue is enough, therefore, we select three order of BSpline basis function to de-
form the image space as followed. 
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The deformation field defined by FFD can be represented as: 
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Here P is the control grid. 
Usually the cost function includes two parts, one is similarity metrics, which char-

acterizes the similarity of two images, and the other is deformation, which is associ-
ated with the particular deformations [17]. 

ndeformatiosimilarity CCC +−=  (3) 
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But computing cost increases greatly when the deformation part is added. Consid-
ering the C2 continuous of BSpline, when the two images aren’t different greatly, we 
can delete the deformation part and still get good results. Actually, after affine trans-
form, the two images are very similar. Therefore we only use similarity part in the 
cost function so as to save much time. 

3   Experiment Results 

3.1   Data Acquisition 

CT images were acquired with Somatom Sensation Cardiac/16 (Siemens). The size of 
CT images is 25512512 ×× , slice thickness is 7.0 mm, and the in-plane dimensions 
are mmmm 58.058.0 × . CT images were acquired 3 days before the microwave abla-
tion. MR images were acquired by a 0.5 T open configuration MR system, Signa SP/I 
(GE Healthcare). The size is 28256256 ×× , slice thickness is 5.0 mm, and the in-
plane dimensions are mmmm 172.1172.1 × . In this case, laparoscopic guidance was 
combined with MR image guidance. The abdominal cavity was inflated with CO2 gas 
for the laparoscopy. MR images were acquired after the inflation during surgical 
procedure.  

3.2   Liver  Segmentation 

An example of manual segmentation of CT is shown in figure 1(a). It is segmented by 
experts carefully.  

The deformable surface model segments the Open MRI very quickly, it’s about 1 
second. An example is shown in figure 1 (b). Then manual segmentation is used to 
trim the result further. The segmentation result is shown in figure 1 (c). It’s need 
about 10-15 minutes. 

(a) (b) (c) 

Fig. 1.  (a) An example of manual segmentation of CTA (b) deformable surface model segmen-
tation of Open MRI (c) manual segmentation of the result of (b)  
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3.3   Results of Registration 

After the livers are segmented, the images sizes can be deduced greatly.  We reduce 
the size of CT image to 25340340 ×× , and the size of MR image to 28180180 ×× . 

An example is shown in figure 2 and 3. Fig.2 (a) is a slice of CT image and 
Fig.2 (b) a slice of Open MR image before registration.  Fig.2 (c)-(e) is the results of 
CT images after rigid, affine and BSpline registration respectively, and Fig.2 (f)-(h) is 
the tumor extracted from registered CT images overlap on the MR image respectively.  

 
(a) 

 
(b) 

(c) (d) (e) 

(f) (g) (h) 

Fig. 2.  (a)  a slice of CTA  (b) a slice of Open MRI  (c)-(e) results of rigid registration,  affine 
registration , and  BSpline registration  (f)-(h)  tumor extracted from CTA after rigid registra-
tion,  affine registration , and  BSpline registration and overlap on the Open MRI  
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The contour of CT images after rigid, affine registration and BSpline-based nonrigid 
registration are overlapped on the Open MRI, and an example is shown in figure 3. 

The computing costs are listed in table 1. 

(a) (b) (c) 

Fig. 3. The contour of CTA overlapped on the Open MRI (a) rigid registration (b) affine regis-
tration (c) BSpline-based nonrigid registration 

Table 1. Computing cost 

 Proposed method (second) Andres’ 
Segment liver from 

Open MRI 
900  

Affine registration 500  
Nonrigid registration 200  

total 1600 990 

3.4   Algorithm Evaluation 

We evaluate our method from visual inspection, distance of liver surfaces, and com-
puting cost, and compare the results of the proposed method with those of Andres’. 

Andre’s method is rigid registration, only three translations and three rotations are 
used to match images. An example is shown as follow. 

Visual inspection.  Figure 2 (c), (d), and (e) are the results of CT images after rigid, 
affine and BSpline registration. We can find the tumor is just beneath the surface of 
the liver. Figure 2 (f)-(h) show the tumor overlapped on the MR images during sur-
gery. The tumor is extracted from the results of rigid, affine and BSpline registration 
respectively. It is easy to find that the position of the tumor is far away from the liver 
surface after rigid registration, a part of the tumor is outside theliver after affine regis-
tration, and the tumor position is just beneath the liver surface after BSpline registra-
tion. Therefore after BSpline registration, we can get satisfied result. 

In figure 3, from positions pointed by arrow A and B, we can easily find the liver 
surface of CT images after BSpline registration approaches the liver surface of MR 
images  best, that of affine registration is better than that of rigid registration. 
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From the visual inspection, the accuracy of proposed method is much better than 
Andres’. 

Distance of liver surface.   We use the method mentioned in reference [9] to estimate 
the distance of two liver surfaces. Detailed can be found in the reference. The 3D 
error of the proposed method is about 1.5 mm, while Andre’s about 3mm. 

Computing Cost. The cost is listed in table 1. Since CT images are acquired before 
surgery, there is enough time to segment liver from it. We don’t include this time in 
the proposed method.  We only consider the time in the surgery.  Using deformable 
model and manually segmentation, it costs about 900 seconds. Affine registration 
needs about 500 seconds, and BSpline-based nonrigid registration about 200 seconds. 
The total is about 1600 second that is about 27 minutes, while Andres’s only needs 
about 900 seconds. 

4   Discussion and Conclusion 

This case was extraordinary one, because MR image and laparoscopy were combined 
for the image navigation. The inflation of the abdominal cavity with CO2 gas caused 
bigger deformation of the liver than usual cases. Even in such a special case, the pro-
posed method can be successfully applied to CT and MR image registration.   Al-
though the computing time is more than Andres’, 27 minutes can be accepted. The 
high accuracy of the proposed method can be more effective to remove the tumor of 
patients. Actually, the most time is used for segmentation of Open MR in the pro-
posed method. If the automatically segmentation algorithm is more effective, the time 
will reduce greatly. In the future, we’ll research better liver segmentation method to 
reduce the computing cost needed in the proposed method.  
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Abstract. External beam radiotherapy treats cancer lesions with ion-
izing radiation. Successful treatment requires a correct definition of the
target volume. This is achieved using pre-treatment MR and CT im-
ages. However, due to changes in patient position, tumor size and organ
location, adaptation of the treatment plan over the different treatment
sessions might be wanted. This can be achieved with extra MR and CT
images obtained during treatment. Bringing all images into a common
reference frame, the initial segmentations can be propagated over time
and the integrated dose can be correctly calculated.

In this article, we show in two patients with rectum cancer and one
with neck cancer that a significant change in tumor position and shape
occurs. Our results show that nonrigid registration can correctly de-
tect these shape and position changes in MR images. Validation was
performed using manual delineations. For delineations of the mandible,
parotid and submandibular gland in the head-and-neck patient, the max-
imal centroid error decreases from 6 mm to 2 mm, while the minimal Dice
similarity criterium (DSC) overlap measure increases from 0.70 to 0.84.
In the rectal cancer patients, the maximal centroid error drops from 15
mm to 5 mm, while the minimal DSC rises from 0.22 to 0.57.

Similar experiments were performed on CT images. The validation here
was infeasible due to significant inaccuracies in the manual delineations.

1 Introduction

External beam radiotherapy treats cancer lesions with ionizing radiation. Dif-
ferent radiation beam angles and shapes are used to obtain a maximal dose
delivery to the target volume while minimizing the irradiation of the surround-
ing, healthy, tissue. Successful treatment and the application of new techniques
like Intensity Modulated Radiotherapy (IMRT), require a correct definition of
the target volume and surrounding tissues, a high radiation dose gradient and
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field resolution and an accurate, reproducible method for positioning the patient
on the treatment table.

In most cases, a pre-treatment MR image is recorded to accurately delineate
the tumor and surrounding organs of interest, while a pre-treatment CT image
is required to calculate the dose distribution and design the treatment plan.
Recently PET images, using one or more tracers, were introduced to provide
additional functional information. The multimodal images of the same patient
are brought into correspondence using rigid or affine image registration. How-
ever, except for the brain, the human body deforms nonrigidly. Therefore, the
patient’s position should be kept as constant as possible. This is achieved with
e.g. personalized facial masks, laser-guided alignment to skin marks and portal
images. These tools are used during the pre-operative scans as well as during
the treatment.

However, geometrical uncertainties, such as internal organ movement, bladder
and rectum distention, setup error, patient breathing and inevitable differences
in imaging position can still cause a major change in the location of the target
volume [1]. Also, shrinking of the tumor and possible weight loss of the patient
oppose an accurate patient positioning and thus reduce the benefits of IMRT.

To optimize treatment, the total dose is distributed over different treatment
sessions. Usually, the treatment plan is worked out on the planning CT, acquired
before radiotherapy, and it is not updated during the treatment. The planning
CT is also used to calculate the total dose delivery, integrated over the different
sessions. Due to the geometrical uncertainties and changes in the patient, errors
can occur in the total dose calculation and distribution.

When images recorded during treatment are included along with the pre-
treatment images, the treatment can be optimized. However, this is only rarely
performed as it requires time-consuming re-delineation of the tissues for every
session. In addition, the problem of a correctly integrated dose calculation still
persists. A method, using a registration based on the contoured volumes to bring
the dose distributions in correspondence, has already been developed [2].

We propose a novel method, that uses voxel-based nonrigid registration to
bring the images, recorded with various modalities and at different time points,
into correspondence. Next, the tissue delineations from e.g. the initial MR im-
age can be propagated to the other MR images. The method is validated by
comparing the automatically propagated delineations to manual delineations.

First, an overview of the used materials and methods is presented. Next, the
results are demonstrated on rectum and head-and-neck images. At the end, we
give a short discussion to finish with the conclusion.

2 Methods and Materials

2.1 Images

The method was applied to images obtained from three patients: two patients
with a rectum tumor (rectum patients) and one patient with a neck tumor (head
and neck patient).
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Rectum. Each of the rectum datasets consists of 3 PET/CT and 3 MR images.
Before each scan, the patients were asked to empty their bladder. The images
were recorded prior to (week 0), during (week 3) and after (week 10) radiother-
apy. Each week, the PET/CT and MR images were recorded at approximately
the same time.

The PET/CT images were recorded on a Siemens Biograph 2 PET/CT scan-
ner. The CT images have a dimension of 512 × 512 × 94 voxels and a voxelsize
of 0.98 × 0.98 × 3.00 mm. The FDG-PET images have the same slice distance
as the CT images, but an in-plane resolution of 128 × 128 pixels and thus a
voxelsize of 3.92 × 3.92 mm. Due to the recording setup, the PET images are a
priori registered to the CT images. To mimic the treatment position, the patient
is positioned on a bellyboard (prone). The CT taken at week 0 is used as the
planning image. All CT images are taken after administration of intravenous
contrast. For the CT at week 3, rectal contrast was administered.

The MR images (dimensions 512×416×40 voxels with voxelsize 0.78×0.78×
4.9 mm) were recorded on a Siemens SonataVision with a T1 sequence. Since
the bellyboard is not suited for use with the MR scanner and since the prone
position causes strong breathing artifacts in MR, the MR images are recorded
with the patient in the supine position.

Head-and-neck. The third set of images consists of two CT and two MR images
of a patient with a neck tumor, recorded prior to (week 0) and during (week 4)
treatment. Again, the patient was recorded on both modalities at approximately
the same time. To minimize pose differences, a personalized facial mask was used
for the positioning of the patient.

The CT images were recorded on a Philips Mx8000 IDT 16 scanner, have a
voxelsize of about 0.5 × 0.5 × 1 mm and a dimension of 512 × 512 × 228 voxels.
For the recording of the MR images, a Philips Gyroscan Intera was used. The
MR images have a voxelsize of about 0.5 × 0.5 × 3.5 mm and a dimension of
512 × 512 × 50 voxels.

A trained expert delineated the tumor in all rectum images and the parotid,
mandible and submandibular gland in all head-and-neck images. The delineations
were transformed from curves specified in each slice to a three-dimensional binary
image.

2.2 Nonrigid Image Registration

Nonrigid registration is performed using a B-spline transformation model. A
grid of mesh control points is positioned over the image and the displacements
of these control points act as parameters for the deformation field. A gradual
refinement of the grid allows more local deformations to be modeled.

Registration is driven by minimization of the cost function Ec, which consists
of a similarity term Esim and two penalty terms Esmt and Evol. They are weighted
with respectively weighting factors ωsim, ωsmt and ωvol:

Ec = ωsimEsim + ωsmtEsmt + ωvolEvol. (1)
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The similarity term models the match between both images. We use mu-
tual information (MI) of corresponding voxel intensities [3, 4] as the similarity
measure. MI is based on the statistical relationship between both images to be
registered, and has proven to be very robust for inter- and intramodal registra-
tion. A Parzen window approach is used to construct the joint histogram, as this
improves the smoothness of the similarity function and allows for the calculation
of analytical derivatives [5].

The penalty terms Esmt and Evol will disfavor impossible or unlikely transfor-
mations, promoting respectively a smooth transformation field and local volume
conservation.

Optimization is carried out using a multiresolution approach. Starting from
downscaled images and a coarse mesh, the image and/or mesh resolution are
increased at each stage. Within each stage, the optimal set of parameters is
sought using a limited memory quasi Newton optimizer [5].

2.3 Validation

The transformation obtained from the nonrigid registration algorithm was ap-
plied to the binary delineation images. Thus, in the reference image we dispose of
the original, reference delineation and different delineations obtained from each
other co-registered image.

The registration was validated using three different criteria: distance between
the centroids of corresponding delineations, their volume difference and volume
overlap. Volume overlap is measured using Dice similarity criterium [6] defined
as:

DSC(S1, S2) = 2
V (S1 ∩ S2)

V (S1) + V (S2)
(2)

where S1 and S2 are the two delineations.
If both volumes are identical, the DSC has a value of 1. When there is no

overlap it is zero. A value of 0.7 indicates a great level of coincidence between
segmentations. [7, 8].

3 Experiments and Results

3.1 Segmentation

An overview of tumor volume, as obtained from the manual segmentation over
the different images, is given in Table 1. As expected, the tumor volume decreases
during treatment. However, a difference in tumor volume of up to 30% between
CT and MR delineations at the same time also occurs. As most tissues in the
human body can be considered as incompressible, this was not expected. It is
probably caused by inferior soft-tissue properties of CT images. The experts who
performed the delineations confirmed that they had significantly more difficulties
to correctly assess the tumor in the CT images than in the MR images.
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3.2 Registration

The ultimate goal of our work is to put the different images of one patient in
the same reference frame, preferably the planning CT.

Several scenarios exist to achieve this goal, including the registration of the
CT and MR images at the same time point and the multitemporal registra-
tion of the CT and MR images recorded in between the different treatment
sessions.

Because of the difference in image position and its multimodal character, the
registration between MR and CT is much more difficult than the registration
between different MR images. Especially in the rectum patients, due to the
prone/supine positioning, very large deformations can be observed with tumor
displacements of up to 7 cm.

In the images recorded at different time points, actual changes in the patients
occur. Not only could they have gained or lost weight but, due to the radiation
therapy, the tumor volume itself shrunk significantly (Table 1). For these reasons
a severe volume penalty is not feasible.

Table 1. Volume of rectum tumors (a) and head and neck structures (b) during the
course of radiotherapy. The volume is given in ml and is calculated based on the
delineations on the MR images and the CT images.

week 0 week 4 week 11
patient 1 MR 25.7 11.5 8.7

CT 18.41 9.58 4.98
patient 2 MR 14.1 13.4 11.4

CT 17.90 11.28 7.48

week 0 week 4
mandible MR 53.41 49.13

CT 66.98 66.31
mandibular gland MR 25.99 16.60

CT 26.64 14.38
parotid MR 8.38 6.35

CT 9.51 5.94

(a) (b)
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Fig. 1. Evolution of the centroid distance and the Dice similarity criterium over the
course of our multiresolution approach for the head and neck patients. The centroid
distance globally decreases over the different stages, although some increases occur.
The DSC evolves more smoothly.
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Fig. 2. Evolution of the centroid distance and the Dice similarity criterium over the
course of our multiresolution approach for the rectum patients. The overall improve-
ment is much better than the head-and-neck patient, but the final result is still not as
good in terms of centroid distance and DSC.

(a) (b) (c)

Fig. 3. Visual assessment of the registration quality for MR-MR and CT-CT regis-
tration. (a) are the images at week 10, (c) are the images at week 0 and (b) is the
registration of (a) to (c). The contours on (a) and (c) were manually delineated. The
contour on (b) was deformed from (a) to (c). For the MR-MR registration, DSC im-
proved from 0.54 between (a) and (c) to 0.81 between (b) and (c). For the CT-CT
registration, although visually the registration seems good, the DSC did not improve
because of a probable error on the delineation.

Figure 1 gives an overview of the registration results obtained for the head-and-
neck images over the different stages, starting from affine transformation in stage
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1. The centroid distance globally decreases over the different stages, although some
increases occur. The DSC evolves more smoothly. The affine volume difference for
the mandible, submandibular gland and parotid is respectively 4.27, 2.43 and 9.36
ml and decreased to 2.67, 1.59 and 4.16 ml after nonrigid registration.

The results obtained on the rectum patients are provided in Figure 2. The
initial registration is much worse compared to Figure 1. While the overall im-
provement is much better than the head-and-neck patient, the final result is still
not as good in terms of centroid distance and DSC. The affine volume differ-
ence for patient 1 decreases from 15.68 to 1.14 ml for registration with the MR
at week 4 and from 16.90 to 4.41 ml for registration with the MR at week 11.
Similar results are obtained for patient 2.

A visual comparison is presented in Figure 3, showing the same slice of the first
and second MR image and the registration result. The manual and transformed
delineations of the tumor are also shown.

4 Discussion and Conclusion

A nonrigid image registration algorithm was applied to intra-patient registration
of MR and CT images recorded prior to and during radiotherapy treatment in
two rectum and one head and neck patient.

Validation of nonrigid registration is a cumbersome task, as no ground truth
is available. We choose to use manual delineations, as radiotherapists are famil-
iar with delineation tasks. However, it is clear from the volume differences be-
tween the CT and MR delineations, that registration validation based on expert-
guided segmentations may suffer from significant inaccuracies in the manual
delineations. Therefore, it is difficult to judge whether the measured final error
is due to an error during the delineation or an error during the registration [9].

Because soft-tissue structures are better visible in MR then in CT, we have
presented the validation results obtained on MR images only. For comparison,
Figure 3 shows a set of CT images and corresponding delineations before and
after nonrigid registration. Visually the registration, including the tumor volume,
seems to be acceptable. However, the manual delineation on the transformed
image differs significantly.

The validation of the multitemporal registration of the MR images shows a
significant improvement. This was especially clear in the rectum images. How-
ever, the initial error as well as the final error, were lower in the head-and-neck
images . This difference is mainly caused by the higher complexity of the rectum
region, due to the higher number of structures in the neighborhood of the tumor
and the variation in bladder and rectum filling.

Future work will focus on the registration error in view of the clinical require-
ments imposed by radiotherapy. In clinical practice, not only the tumor but also
a safety region around the tumor is irradiated, while trying to spare neighboring,
possibly vital organs. Therefore, we will have to include the segmentation of more
clinically relevant structures. Comparisons are possible between the treatment
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plan, designed using the pre-treatment scan and delineations, and the manually
and automatically delineated images recorded in between treatment sessions.

Also, multimodal registration of the MR and CT images is required. Prelim-
inary results are very good for the head and neck patients, showing registration
results approaching those of monomodal registration. Due to the large deforma-
tions caused by the difference in imaging position, accurate registration of the
rectum patients is more difficult. Also, due to the uncertainty on the delineation,
validation is still lacking.

Although our presented method can certainly be useful in current clinical
practice, its use will be boosted with the availability of on-board cone beam
CT images [10]. Registering these images to the planning CT will allow plan-
ning adaptation to the actual patient position on the table and at the time of
treatment. Thus a more accurate dose delivery and possibly even smaller safety
margins become possible. However, while current registrations can take up to 30
minutes, registration of on-board cone beam CT images should be performed in
a few minutes or less.
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Abstract. The aims of this paper are to devise robust methods for the
description of the variability in shapes of long bones using 3D statisti-
cal shape models (SSMs), and to test these on a dataset of humeri that
demonstrate significant variability in shape. 30 primate humeri were CT
scanned and manually segmented. SSMs were constructed from a train-
ing set of landmarks. The landmarks of the 3D shapes are extracted
automatically using marching cubes and point correspondences are au-
tomatically obtained via a volumetric non-rigid registration technique
using multiresolution B-Spline deformations. The surface registration re-
sulted in no discernible differences between bone shapes, demonstrating
the high accuracy of the registration method. An analysis of variations
is applied on the shapes based on the model we built. The first mode of
variation accounted for 42% of the variation in bone shape. This single
component discriminated directly between great apes (including humans)
and monkeys.

1 Introduction

Subject-specific preclinical surgical planning, intraoperative navigation, and
musculoskeletal modelling require accurate definition of the shapes of bones.
The most appropriate methods available require large imaging datasets and man-
ual or semi-manual segmentation; these methods are not widely applicable and
have significant health costs that includes exposure to ionizing radiation. Model
based image analysis simplifying and stabilizing problems has been researched
and widely used in computer vision, such as active shape models [5] and the
active appearance models [4]. Statistical modelling is one of those techniques
generating considerable interest for use in studying shape variations in anatom-
ical shapes, as well as being taken as a basis for segmenting and interpreting
images. The major difficulties in building statistical models are manual segmen-
tation and determination of corresponding landmarks over the set of training
shapes boundaries / surfaces. Finding automatic segmentation methods is not
the primary aim of this work, thus only the process of landmark extraction will
be discussed in this paper. The accuracy of the correspondences is of high im-
portance because of the sensibility within shape parameterisation, which may
lead to difficulty in defining shape constraints. Though manually labelling cor-
responding points on each sample is still being used in many applications, it is
time-consuming and cumbersome for use in 2D images. It becomes impractical
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in 3D images due to the increasing number of landmarks required to describe
the shape and the difficulties in identifying landmarks unambiguously. Numerous
attempts have been made to automate the construction of 3D statistical shape
models [6]. Kelemen et al [11] established surface correspondence by describing
the surfaces by a series expansion using spherical harmonics while Wang et al
[16] computed surface correspondence and triangulation in a hierarchical way
after a geodesic interpolation to the initial sparse set of corresponding points
generated using a shape-based matching procedure. Rhodri et al [8] described a
model of automatically constructing optimal models by minimising the descrip-
tion length of the model. Currently, non-rigid registration is used by a number
of authors to automate the 3D corresponding landmark set [3] [10] [9]. Brett and
Taylor [3] constructed a mean shape from a set of smooth synthetic examples by
the correspondence of their sparse polyhedral approximations and the produc-
tion of a binary tree of merged shapes. Fleute and Lavalee [9] registered data
sets using an elastic registration method provided by Szeliski and Lavalle based
on octree-splines. Our method generating the statistical models is based on the
work of Frangi et al [10].

2 Statistical Shape Models

The basic idea is to establish, from a training set, the pattern of ’legal’ variation
in the shapes and spatial relationships of structures in a given class of images.
Statistical analysis is used to give an efficient parameterisation of this variability,
providing a compact representation of shape [7]. SSMs are not equal to point
distribution models (PDMs) because the statistics can be captured not only by
the coordinates of feature points. The term ’landmark’ can be lines (e.g. sutura,
crista) or areas (e.g. pars, foramen), which can also describe the features a shape.
For example, crest lines [19] [20] have a very strong anatomical significance and
indicate salient structures so that they can be used as anatomical landmarks. In
this paper, we consider landmarks as point features on the shape surface.

Given n sample shapes {Xi; i = 1, 2, · · · , n} in the same coordinate system,
assuming that we have obtained m 3D corresponding landmarks {(xj , yj , zj); j =
1, 2, · · · , m} denoting the nodes of a surface triangulation for each shape, Xi can
be represented by vectors Xa = (xa1, ya1, za1, xa2, ya2, za2, · · · , xan, yan, zan)T

which form a distribution in a shape space. Principal component analysis (PCA)
is used to reduce dimensionality by picking out the main axes of the distribution.
Only the first few axes, which account for the majority of the variation, are
modeled. The model can be represented as

X = X̄ + P b (1)

X̄ is the mean vector allowing explicit measurement of the variation exhibited
by each landmark. b is a 3n dimensional vector that controls shape variations
by varying the values of it. P is a 3n by t matrix whose columns are unit
vectors along the principal axes of the distribution. t is number of principal axes
corresponding to the first largest eigenvalues. The shape generated is similar to
those in the training set given −3

√
λi ≤ bi ≤ 3

√
λi.
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3 Establishing Correspondences Using Surface
Registration

Before establishing correspondences using non-rigid surface registration, all
shapes are aligned using a rigid surface registration algorithm (ICP, [1]). Choos-
ing a shape as the reference shape, all the other shapes are aligned into the
coordinate system defined by the reference shape. Once all shapes have been
translated and rotated into a common coordinate system, non-rigid registration
is employed to establish correspondences among the training set. One of the
most common mathematical models being using in non-rigid registration are
splines (e.g. B-spline [17] [13] [14], thin-plate splines [2] [15] [12]). The regis-
tration algorithm employed here is a surface-based registration using multires-
olution free-form deformations (FFD) which are modeled using B-splines. It is
an extension of the image-based registration algorithm proposed by Rueckert
et al. [17] and further developed by Schnabel et al. [18]. The basic idea of the
algorithm is to embed a surface in a volumetric mesh which defines the contin-
uous deformation field. The mesh is subsequently subdivided into higher reso-
lution levels by inserting control points into the current level of control points
and decreasing the mesh space; the mesh notes at each of the resolution levels
are taken as the control points that are interpolated by a set of B-spline basis
functions.

Let Ω = {(x, y, z)|0 ≤ x ≤ X, 0 ≤ y ≤ Y, 0 ≤ z ≤ Z} be the domain of the
image, Φ be the nx ×ny ×ny mesh of control points φi,j,k at level h with uniform
spacing, the non-rigid transformation at level h can be written in the form of
cubic B-spline function:

T l
local(x, y, z) =

3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (2)

where Bi is the lth uniform cubic B-spline basis function and φ denoting the
control points. B-spline is locally controlled by changing the control points. The
deformation is affected by the spacing of the control points: a larger spacing
leads to a smoother global shape while a relatively smaller spacing leads to
higher local deformation. A multiresolution FFD tends to generate a hierarchy
of local deformation meshes by deforming a sequence of control points Φ1, Φ2, · · · ,
ΦH . The local deformation is constructed by summing up all levels of the
resolutions:

Tlocal(x, y, z) =
L∑

l=1

T l
local(x, y, z) (3)

To calculate the transformation T, the non-rigid surface registration algorithm
minimizes the distance between every point in the reference surface and the
closest point on the each of the other shapes. Once the closest points have been
established for each point in the reference shape, the optimal control point values
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of the FFM can be calculated using the algorithm proposed in [13]. This process
is repeated until the distances between surfaces cannot be minimized any further.
After registration, the reference shape is deformed to all other shapes. For each
surface point the closest point on the other shapes is then assumed to be the
corresponding point.

4 Results

A set of 30 primate humeri were CT scanned and manually segmented. There are
maximum 500 slices for each humerus; the slice thickness is 1 mm; the image ma-
trix dimension is 512 by 512; the in-plane resolution is 0.35 mm by 0.35 mm. All
humeri were converted into 3D triangulated mesh surfaces by a marching cubes
method. A decimated humerus surface and its triangular mesh are shown in
figure 1. These 8 species of primates, including 3 cebuses, 4 colobuses, 3 gorillas,
4 macacas, 3 chimpanzees, 4 papios, 5 presbytises, and 4 human, encompassed
all terrestrial locomotor types.

Fig. 1. A humerus surface and its triangular mesh

The 30 humeri are very different in size from specie to specie. For example,
a gorilla humerus is about 5 times larger than a cebus humerus. At the current
stage, we are only interested in shape variations, but not the size variations,
therefore a bounding box scaling is applied to reduce complexity before the
alignment of the dataset. The scaling factors for a specific humerus are defined
as the difference of the longest axis between this humerus and a chosen reference
humerus. If the reference humerus T is in a ΔX × ΔY × ΔZ bounding box
with ΔZ denoting the length of its longest axis, humerus S is in a ΔXi ×
ΔYi × ΔZi bounding box with ΔZi denoting the length of its longest axis,
S is scaled with scaling factors t = ΔZ/ΔZi in x, y and z directions. The
scaling procedure only changes the size of a humerus but does not change its
shape.

In our dataset, a papio humerus with 13518 nodes is chosen as the reference
shape. Applying scaling to each of the other 29 humeri in the dataset and aligning
them to the coordinate system defined by the reference shape using rigid surface
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registration, a new set of humeri in the same size is created at the same position
and the same orientation. The reference humerus is then deformed to each of
the other 29 humeri directly using multiresolution FFD. The deformation field
is with four mesh subdivisions and its initial spacing is 40 mm. Figure 2 explains
the pipeline of the above procedure. In Figure 2(d), two humeri are almost
overlapping each other. Taking the landmarks on the deformed reference humerus
as the dynamic atlas, the landmark set of a source humeri that have the minimum
distance to the atlas are extracted.

(a) reference and source (b) source is scaled

(c) alignment (d) deformation

Fig. 2. Pipeline for finding correspondence

A training set with point correspondences is constructed for applying PCA.
Figure 3(a) is a plot for the 30 eigenvalues and Figure 3(b) is a plot for their
accumulated percentages. Over 90% of the variability in shape was defined
by the first nine principle components. Figure 4 shows the first 3 modes of
variation. The instances are generated by varying a single value in vector b
(equation (1)), fixing all others at zero standard deviations from the mean
shape.

Fig. 3. Eigenvalues and their cumulative percentages
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CORONAL VIEW SAGITTAL VIEW

(a) first mode

(b) second mode

(c) third mode
−3

√
λ mean 3

√
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√
λ mean 3

√
λ

Fig. 4. First 3 modes in shape variations

Each specific humerus has its b = Φ−1(x − x̄) vector that distinguishes itself
from other humeri. For each humerus, we take the first 3 values of its vector
b as the coordinates for x, y and z axes; the shapes are represented by a 3D
point. This resulted in two distinct clusters of which the primates in the left
cluster are the great apes and humans, the primates in the right cluster are
monkeys (Figure 5). The humeri are shown in sagittal view. The first values of
the b vectors are the main features that distinguish the two clusters. The most
obvious difference between these two clusters is bending structure which can be
observed from the 1st mode of variations (Figure 4).
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Great Apes Monkeys

Fig. 5. Classifications (the humeri from the left to the right are gorilla, chimpanzee,
human, presbytis, papio, colobus, macaca, cebus)

5 Conclusions

This paper has demonstrated a method for the automatic construction of 3D
statistical shape models. The methodology is based on the automatic extrac-
tion of landmarks in a given class of images and the automatic establishment of
correspondences among the landmark sets. The keys of establishing the corre-
spondences are the generation of a dynamic atlas from the sample shapes and
the deformations of the dynamic atlas to each of the other shapes.

The results show that the combination of a dynamic atlas and the multires-
olution FFD non-rigid surface registration is robust to construct 3D SSMs for
humeri from a variety species of primates. Since all the long bones consist of a
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long shaft with two bulky ends or extremities, this procedure is a generic frame-
work that can be extended to define the shapes of any other long bones (e.g.
femur and tibia).

The results have also demonstrated that the shape information can be used
as a classifier. The classification of our dataset shows that SSMs of bones can
discriminate between bones that have different environmental influences that
includes loading based on locomotor type, and taxonomy.
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Abstract. Point-based registration with known correspondence is of-
ten used as either a stand-alone method or a part of a more complex
algorithm. The goal of this type of registration is to align two sets of
points with the same number of corresponding points using a selected
transformation type. Presented are closed form solutions for the trans-
formation parameters that optimally align two point sets in the least
squares sense for the following transformation types: rigid, similarity,
rigid with nonuniform scales, and a linear combination of basis functions.
It is shown that those registration methods whose underlying transfor-
mations form a group satisfy the identity, symmetry, transitivity, and
distortion properties.

1 Introduction

This is a theoretical paper that provides a collection of the optimal (in the least
squares) solutions for the point-based registration with known correspondence
for the following transformation types: rigid, similarity, rigid with nonuniform
scales, and linear combination of basis functions. The solutions for rigid [1] and
similarity [2] cases have already been reported, and the original contribution of
this paper are the solutions for the cases of rigid registration with nonuniform
scales and a linear combination of basis functions, and the analysis of properties
of the optimal solutions for each of the transformation types. Proofs of the results
are omitted due to the limited space.

2 Notation and Definitions

2.1 Transformations, Registration Operators, Groups

Let S denote an M -dimensional metric space [3].

Definition 1. An M -dimensional geometric transformation is a function T :
S �→ S.

� Research supported by the NIH under grant number EB02957.
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Geometric transformations will be referred to as just transformations. Let T
denote the set of transformations of certain type (e.g. affine transformations).
Let Tid denote the identity transformation. Thus, Tid(r) = r, ∀r ∈ S. Let P

denote the set of ordered sets of N points from S.

Definition 2. A point-based registration operator is a function Γ : P
2 �→ T .

Point-based registration operators will be referred to as just registration oper-
ators. The fact that the elements of P are ordered sets of points makes this an
operator for point-based registration with known correspondence (i.e. the i-th
point from the first set of points corresponds to the i-th point from the second
set of points).

Definition 3. A set of transformations T with respect to transformation com-
position ◦ is said to form a group of transformations if it is closed (∀T1,T2 ∈
T ⇒ T1 ◦ T2 ∈ T ), if it contains the identity transformation (Tid ∈ T ) and if
every transformation in T has an inverse in T (∀T ∈ T there is T−1 ∈ T such
that T ◦ T−1 = Tid).

Note that the standard group definition [3] requires associativity, which is triv-
ially satisfied for the composition of transformations (∀T1,T2,T3 ∈ T ⇒ (T1 ◦
T2) ◦ T3 = T1 ◦ (T2 ◦ T3)) and is therefore not included in Def. 3.

2.2 Transformation Types

Let I denote an M × M identity matrix.

Definition 4. An M -dimensional rotation matrix is an M × M orthonormal
matrix R (RRT = I) for which det(R) = 1.

Definition 5. An M -dimensional rigid transformation is a transformation of
the type

T(r) = Rr + t,

where R is an M -dimensional rotation matrix and t an M ×1 translation vector.

An M -dimensional rigid transformation has M(M+1)
2 degrees of freedom.

Definition 6. An M -dimensional similarity transformation is a transformation
of the type

T(r) = sRr + t,

where scalar s is a uniform scale factor, R is an M -dimensional rotation matrix
and t an M × 1 translation vector.

An M -dimensional similarity transformation has M(M+1)
2 +1 degrees of freedom.

Definition 7. An M -dimensional rigid transformation with nonuniform scales
is a transformation of the type

T(r) = SRr + t,

where S is an M × M diagonal matrix, R is an M -dimensional rotation matrix
and t an M × 1 translation vector. Matrix S is called the scale matrix and its
diagonal elements are called nonuniform scale factors.



Point-Based Registration with Known Correspondence 317

An M -dimensional rigid transformation with nonuniform scales has M(M+3)
2

degrees of freedom.

Definition 8. An M -dimensional affine transformation is a transformation of
the type

T(r) = Ar + t,

where A is an M × M matrix and t an M × 1 translation vector.

An M -dimensional affine transformation has M(M + 1) degrees of freedom.

Definition 9. An M -dimensional linear combination of basis functions is a
transformation of the type

T(r) =
K∑

k=1

wkBk(r),

where Bk are basis functions and M × 1 vectors wk are the transformation
parameters.

This transformation representation has KM degrees of freedom. Linear combi-
nation of basis functions is a general transformation model that can represent a
wide class of transformations including affine, Fourier series [4], thin plate splines
(with fixed nodes) [5], and polynomial transformations of any order (e.g. B-
splines [6]). However, it does not include rigid, similarity and rigid with nonuni-
form scales transformations.

Note that the rigid, similarity (with a nonzero uniform scale factor), rigid with
nonuniform scales (with nonzero nonuniform scale factors) and (non-singular)
affine transformations form transformation groups while the linear combination
of basis functions in general does not.

2.3 Properties

A registration operator needs to satisfy the following properties, which are given
both descriptively and formally.

Identity. A registration operator, when applied to two identical point sets
should generate the identity transformation. Formally,

Γ(p, p) = Tid.

Symmetry. When it is applied to two point sets, the obtained transformation
should be the inverse of the transformation obtained when the order of the
point sets is reversed. Formally,

Γ(p, q) = [Γ(q, p)]−1.

Transitivity. The operator should be transitive, i.e. for any three point sets,
the generated transformation from the second to the third set composed with
the generated transformation from the first to the second set should be equal
to the generated transformation from the first to the third set. Formally,

Γ(q, r) ◦ Γ(p, q) = Γ(p, r).
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Distortion. If one of the point sets is geometrically deformed (distorted), the
obtained transformation should reflect the distortion. The distortion func-
tions should be from the set of transformations in which the solution is
sought. Formally,

Γ(T(p),U(q)) = U−1 ◦ Γ(p, q) ◦ T.

Here T(p) represent the point set obtained by applying transformation T to
each point from point set p. The above properties have to hold ∀p, q, r ∈ P and
∀T,U ∈ T . These properties can be simplified without loss of generality to the
following list.

(i) Γ(p ◦ T(p)) = T, ∀T ∈ T , ∀p ∈ P

(ii) Γ(p, q) = [Γ(q, p)]−1, ∀p, q ∈ P

(iii) Γ(q, r) ◦ Γ(p, q) = Γ(p, r), ∀p, q, r ∈ P

It is not difficult to prove that this set of properties is equivalent to the first
one. For this reason, only the set of properties (i) - (iii), being the simpler of
the two, will be used from now on.

The above properties can be defined only for the registration operators that
are defined on those sets of transformation T that form a transformation group.
E.g. B-splines do not form a transformation group because (among other reasons)
the inverse of a B-spline transformation is not a B-spline transformation. This
prevents one to define the symmetry property (and others) with T being B-spline
transformations.

2.4 Problem Statement

The goal is to provide a closed form solution for the transformation parameters
that optimally align two points sets with known correspondence. The optimal
alignment in the least squares sense is defined here.

Definition 10. Let Tα1,...,αK represent a transformation model with K param-
eters αi. The parameters that optimally align two corresponding points sets
{x1, . . .xN} and {y1, . . . ,yN} minimize the sum of squared distances

N∑
i=1

‖Tα1,...,αK (xi) − yi‖2
.

3 Optimal Transformations

3.1 Transformations Involving Rotation Matrix

The optimal parameters for the transformations involving rotation matrix need
to satisfy the orthonormality of the rotation matrix which makes these cases
distinct from the case of linear combination of basis functions. The computa-
tion of the optimal translation vector for these cases is based on the following
lemma.
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Lemma 1. The optimal rigid transformation with nonuniform scales between
two sets of corresponding points maps the centroid of the first set of points to
the centroid of the second set of points.

This lemma is a generalization of the corresponding result for the case of rigid
[1] and similarity [2] transformation. If the two sets of points are {x1, . . .xN}
and {y1, . . . ,yN} and if the optimal scale matrix S and rotation matrix R are
known, then it follows from Lemma 1 that the optimal translation vector is

t =
1
N

∑
i

yi − SR
1
N

∑
i

xi. (1)

This allows one to eliminate the translation from the problem by de-meaning
the points, determine the optimal rotation matrix (and uniform scale factor or
nonuniform scale factors) and then determine the optimal translation vector
from Eq. 1. Let the de-meaned points be

Xi = xi − 1
N

∑
i

xi and Yi = yi − 1
N

∑
i

yi.

Rigid Transformation Let

Σ =
1
N

∑
i

YiXT
i .

Let the singular value decomposition of Σ be UDV T , and

C =

{
I if det(Σ) ≥ 0
diag(1, 1, . . . , 1, −1) if det(Σ) < 0

In the case of rigid registration, the optimal rotation matrix is

R = UCV T . (2)

This is a result from [2] and is given here for completeness purposes. Once the
optimal R is known, the optimal translation vector is obtained from Eq. 1 using
S = I (there is no scaling present in the case of rigid transformation).

Similarity Transformation. In the case of similarity transformation, the op-
timal rotation matrix is given by Eq. 2, the optimal uniform scaling factor is

s =
N∑

i X
T
i Xi

tr(DC),

and the optimal translation vector is obtained from Eq. 1 using S = sI. Again,
this is a result from [2] and is given here for completeness purposes.
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Rigid Transformation with Nonuniform Scales

Lemma 2. Let Xi =
[
Xi1 · · · XiM

]T , Yi =
[
Yi1 · · · YiM

]T , αj =
∑

i YijXi,
and βj =

∑
i X2

ij. Let the optimal rotation matrix for the rigid transformation

with nonuniform scales be R =

⎡⎢⎣ r1
...

rM

⎤⎥⎦, where ri are the rows of R. Then the

optimal nonuniform scale factors are

sk =
rkαk

βk
, k = 1, . . . , M, (3)

and the corresponding sum of squared distances is∑
i

YT
i Yi −

∑
j

(rjαj)2

βj
. (4)

The purpose of Lemma 1 is to remove the translation vector from the problem
and the purpose of Lemma 2 is to remove the nonuniform scale factors from the
problem. The idea is to find the rotation matrix by minimizing Eq. 4, then com-
pute the nonuniform scale factors from Eq. 3, and finally use Eq. 1 to compute
the translation vector. The minimization of Eq. 4 needs to be done with the
constrains that R is orthonormal and that det(R) = 1. One way to solve for R is
to use a parametric representation for R and then minimize Eq. 4 with respect
to the parameters (angles). E.g. in the 2D case

R =
[
cosφ − sinφ
sin φ cosφ

]
,

and the optimal angle of rotation is

φ =
1
2

tan−1 k3

k1 − k2
,

where

k1 =
α2

11

β1
+

α2
22

β2
, k2 =

α2
12

β1
+

α2
21

β2
, and k3 = 2

α21α22

β2
− 2

α11α12

β1
.

3.2 Linear Combination of Basis Functions

Theorem 1. The transformation T(r) =
∑K

k=1 wkBk(r) that optimally (in the
least squares sense) aligns two sets of corresponding points {x1, . . .xN} and
{y1, . . . ,yN} has the following parameters[

w1 · · · wK

]
=
[
y1 · · · yN

]
A(AT A)−1,

where

A =

⎡⎢⎣B1(x1) · · · BK(x1)
...

...
B1(xN ) · · · BK(xN )

⎤⎥⎦ .
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4 Properties of Optimal Registration Operators

Let ΓR represent the optimal rigid registration operator, ΓS represent the opti-
mal similarity registration operator, ΓN represent the optimal rigid with nonuni-
form scales registration operator, and ΓA represent the optimal affine registration
operator.

Theorem 2. Registration operators ΓR, ΓS , ΓN , ΓA satisfy identity, symme-
try, transitivity, and distortion properties.

5 Summary

Presented is a collection of the optimal (in the least squares sense) solutions
for the point-based registration with known correspondence for the following
transformation types: rigid, similarity, rigid with nonuniform scales, and linear
combination of basis functions. It is shown that those registration methods whose
underlying transformations form a group satisfy the identity, symmetry, tran-
sitivity, and distortion properties. While proofs are not included in this paper,
the optimal solutions and the properties can be proven mathematically, which
means than they hold for any sets of points.
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Škrinjar, Oskar 110, 315
Slagmolen, Pieter 297
Smith, Stephen 9
Spooner, John 144
Srichai, Mondavi B. 195
Staring, Marius 151
Suetens, Paul 136, 206, 297
Sundaram, Tessa A. 238
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